
Hey, You, Get Off of My Cloud:

Exploring Information Leakage in Third-Party Compute Clouds

Presenter: Ramya Pradhan

Course: CAP 6135, Spring 2012

Author information

!   Dept. of Computer Science and Engineering, UCSD

!   Thomas Ristenpart, Hovav Shacham, Stefan Savage

!   Computer Science and Artificial Intelligence Laboratory, MIT

! Eran Tromer

!   Presented at 2009 ACM Conference on Computer Security,
Chicago, Illinois.

Problem (Opportunity)

!   Maximize profit

!   Customer seeking cloud’s infrastructure as service

!   Low cost of operability

!   High scalability

!   Dynamic provisioning

!   Cloud service provider

!   Multiplex existing resources

Problem (Opportunity)

!   Trust relationship

!  Third-party infrastructure

!   Threats from other customers

!  Physical resource sharing between virtual machines

Problem (Opportunity)

!   Threats from other customers

!  Customer and adversary co-tenancy

!  Cross-VM attacks

!   Is it PRACTICAL?

Research questions

!   Can my adversary know where I am?

!   Can my adversary knowingly be my co-tenant?

!   Can my adversary knowingly access shared
resources when I access them?

!   Can my adversary, being my co-tenant, steal my
confidential information via cross-VM
information leakage?

Testing platform

!   Amazon’s Elastic Compute Cloud (EC2)

!   Linux, FreeBSD, OpenSolaris, Windows

!   VM provided by a Zen hypervisor

!   Domain0 or Dom0

!   Privileged VM

!   Manages guest images, physical resource provisioning,
access control rights

!   Routes guest images’ packets via being a hop in traceroute

Testing platform

!   Amazon’s Elastic Compute Cloud (EC2)

!  Terminology

!   Image: user with valid account creates one or more of
these

!   Instance:

!   Running image

!   One per physical machine

!   20 concurrently running instances

Testing platform

!   Amazon’s Elastic Compute Cloud (EC2)

!  Degrees of freedom

!   Regions: US and Europe

!   Availability zones: infrastructure type

!   Instance type:

!   32-bit architectures: m1.small, c1.medium

!   64-bit architectures: m1.large, m1.xlarge, c1.xlarge

Testing platform

!   Amazon’s Elastic Compute Cloud (EC2)

!  Addressing

!   External IPv4 address and domain name

!   Internal RFC 1918 private address and domain name

!   Within cloud: domain names resolve to internal address

!   Outside cloud: external name maps to external address

Information collection tools

! nmap

!   TCP connect probes
!   3-way handshake between source and target

! hping

!   TCP SYN traceroutes
!   Iteratively send packets until no ACK is received

! wget

!   Retrieve 1024 bytes from web pages

Information collection tools

!   Evaluation

!  External probing: outside EC2 to instance in EC2

!   Internal probing: between two EC2 instances

Where is my target: Cloud cartography

!   Hypothesis:

Different availability zones likely to correspond to
different internal IP address ranges. Similarly,
different availability zones may correspond to
different instance types.

Where is my target: Cloud cartography

!   Facilitating service

!  EC2’s DNS maps public IP to private IP

!   Infer instance type and availability zone

Where is my target: Cloud cartography

!   Evaluation

!  External probing:

!   Enumerate public EC2-based web servers

!   Translate responsive public IPs to internal IPs using
DNS queries within cloud

Where is my target: Cloud cartography

!   Evaluation

!   Internal probing:

!   Launch EC2 instances of varying types

!   Survey resulting IP address assignment

Where is my target: Cloud cartography

!   External probing

!  WHOIS query

!  Distinct IP address prefixes: /17, /18, /19

!   57344 IP addresses found

!   11315 responded to TCP connect probe on port 80

!   8375 responded to TCP port 443 scan

!   ~14000 unique internal IPs

Where is my target: Cloud cartography

!   Facilitating features of EC2

!   Internal IP address space cleanly partitioned

!   Instance types within partitions show regularity

!  Different accounts exhibit similar placement

Where is my target: Cloud cartography

!   Evaluation results

!  Static assignment of IP addresses to physical
machines

!  Availability zones use separate physical
infrastructure

!   IP addresses repeated for instances from disjoint
accounts only

Hide me: prevent cloud cartography

!   Dynamic IP addressing

!   Isolation of account’s view of internal IP
address space

Know thy neighbor:

Determining co-residence

!   Co-resident: instances running on same machine

!   Conditions: any one of

!  Matching Dom0 IP address

!  Small packet round-trip times

!  Numerically close internal IP addresses

Know thy neighbor:

Determining co-residence

!   Matching Dom0 IP address

!  Dom0 always on traceroute

!   Instance owner’s first hop

!  TCP SYN traceroute to target

!  Target’s last hop

Know thy neighbor:

Determining co-residence

!   Packet round-trip times

!   10 RTTs

!   1st always slow

!  Use last 9

Know thy neighbor:

Determining co-residence

!   Internal IP addresses

!  Contiguous sequence of IP addresses share same
Dom0 IP

!   8 m1.small instances can be co-resident by design

Know thy neighbor:

Determining co-residence

!   How to check

!  Communication between two instances

!   Possible: co-resident

!   Impossible: not co-resident

!   Low false positives using three checks for matching
Dom0 means two instances co-resident

NO thy neighbor:

Obfuscating co-residence

!   Network measurement obfuscation techniques

!  Unresponsive Dom0 to traceroutes

!  Random internal IP generation at instance launch

!  Virtual LANS to isolate accounts

!   Network-less based techniques for “know thy
neighbor”? Is it possible?

You can run, but cannot hide:

Exploiting Placement in EC2
!   Attacker “places” its instance on the same

physical machine as target

!   How to place?

!  Brute-force placement

!  Heuristic-based placement

You can run, but cannot hide:

Exploiting Placement in EC2
!   Brute-force placement

!  Run many instances

!  Measure how many achieve co-residency

!   Hypothesis

 Brute-force placement for large target sets
 allow reasonable success rates.

You can run, but cannot hide:

Exploiting Placement in EC2
!   Brute-force placement strategy

!   List targets

!  Group them by availability zones

!   For a long period of time run probe instances

!   If co-resident, successful placement

!   Else, terminate probe instance

You can run, but cannot hide:

Exploiting Placement in EC2
!   Brute-force placement strategy

!   List targets

!  Group them by availability zones

!   For a long period of time run probe instances

!   If co-resident, successful placement

!   Else, terminate probe instance

You can run, but cannot hide:

Exploiting Placement in EC2
!   Brute-force placement strategy: Results

!   List targets: 1686 servers (authors’ creation)

!  Group by availability zones: m1.small, Z3

!  Run probe instances: 1785

!  Co-residency with 141 victims (8.4%)

!   Naïve techniques can cause harm!

You can run, but cannot hide:

Exploiting Placement in EC2
!   Heuristic-based placement strategy

!   Launch instance soon after target launches

!   Instant flooding in appropriate zone and type

!   Why this works:

!   EC2 parallel placement algorithms

!   Servers only run when required

!   Server state monitoring using network probing

!   Auto-scaling systems

You can run, but cannot hide:

Exploiting Placement in EC2
!   Heuristic-based placement strategy

!  Experiment:

!   Victim launches 1, 10, 20 instances

!   Adversary floods 20 instances 5 minutes after victim

!  Result:

!   40% Co-residency achieved

!   Failed when victim instances were large

YOU can run AND can hide:

Patching Placement vulnerability
!   Limited effectiveness:

!   Inhibiting cloud cartography and co-residence
checks

!   Absolute effectiveness:

!   Let the (YO)Users decide!

!   Request placements only for their instances

!   Pay opportunity cost for under-utilized machines

Walls have ears:
Cross-VM Information Leakage
!   Side-channel attacks using time-shared caches

!  Co-residence detection

!  Co-resident’s web traffic monitoring

!  Timing co-resident’s keystroke

Walls have ears:
Cross-VM Information Leakage
!   Time-shared caches

!  High load implies active co-resident

!  Adversary:

!   Places some bytes at a contiguous buffer

!   Busy-loop until CPU’s cycle counter jumps to a large
value

!   Measure time taken to again read placed bytes

Walls have ears, PLUG them:
Inhibiting side-channel attacks
!   Blinding techniques

!  Cache wiping, random delay insertion, adjust
machine’s perception of time

!   But, are these effective?

!  Usually, impractical and application specific

!  May not be possible to PLUG all side-channels

!   Only way: AVOID co-residence

In conclusion:

!   Problem exists

!   Risk mitigation techniques do just that – mitigate.

!   Only way out:

!  Acknowledge the problem

!  Creative solutions are bound to come up

Strengths

!   Effectively introduces the “Elephant in the room”

!   Information leakage between co-residents on a third-
party cloud is UNAVOIDABLE

!   Gives detailed experimental procedures

!  Helps with replication studies

Strengths

!   Explores effective ways to unmask the problem

!  Network probing, cloud cartography, determining co-
residency, exploiting placement policies

!   Explores solutions to these problems

!   Inhibiting used from doing the above helps to some
extent

!  ONLY current solution: Let the user know.

Weakness

!   This scheme does not work on a target on a full system.

!   Open to interpretation “… accounts under our control”

!  Amazon acknowledged this study as “controlled experiment”

 (http://www.techworld.com.au/article/324189/amazon_downplays_report_highlighting_vulnerabilities_its_cloud_service)

!  Authors mean “accounts that they created”, and not
“controlled experiment”.

Possible extensions

!   Bring more awareness to users

!  More papers without scope for interpretation ambiguity

!  Collaborate research efforts with other universities

!  Explore similar vulnerabilities with other cloud providers

!   Authors say they exist, but proof is required

!   Mathematically model the phenomenon.

Questions?

Thank You!!

