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Introduction: Rootkit
• Rootkit is a software program designed to gain control over a 

system or network.
• Rootkits can not only hide their presence but also tamper with OS 

functionalities to launch various attacks.
– Opening backdoors
– Stealing private information
– Escalating privileges of malicious processes
– Disable defense mechanisms



Previous works 
• Three major research categories:

– Analysis of rootkit behavior
• Panorama, HookFinder, K-Tracer, and PoKeR

– Detection of rootkits based on certain symptoms exhibited by 
rootkit infection
• Copilot, S BCFI, and Vmwatcher

– Preservation of kernel code integrity by preventing malicious 
rootkit code from executing
• S ecVisor, Patagonix, and NICKLE.



Motivation

• The act of preventing malicious rootkit codes from executing alone 
is not enough. This type of security can be bypassed easily.

• Rootkits such as the return-oriented ones, will first subvert kernel 
control flow and then launch the attack by only utilizing legitimate 
kernel code snippets.
– Hijacking attack on return address and function pointers



Motivation

• In addition to the preservation of kernel code integrity, it is also 
equally important to safeguard relevant kernel control data 

• By preserving the kernel control flow integrity, it enables the system 
to block out all rootkit infections in the first place.



Kernel Hook
• As there has been extensive research on the protection of return 

address, this paper is solely focused on the protection of function 
pointers.

• Function pointers are typically hijacked or “hooked” by rootkits, 
thus for ease of presentation, the paper addressed the term 
function pointers and kernel hooks interchangeably.



Challenge(1)
• In OS such as windows and linux, there exist thousands of kernel 

hooks and these kernel hooks can be widely scattered across the 
kernel space.

• To monitor all write to these system pages would introduce 
significant performance overhead.

• Extremely inefficient as their previous study showed that only 1% 
of kernel memory writes may cause problem.



Ubuntu Study
• Analysis of a typical Ubuntu 8.04 

server by using a whole-system 
emulator called QEMU.

• Within a randomly-selected 100 
secs, there were 700,970,160 total 
kernel memory writes.

• Only 6,479,417(1%) memory 
writes were possible to create 
page fault.



Challenge(2)
• Protection Granularity Gap

– effective protection requires byte-level granularity while 
commodity computers allow only for protection at a much 
broader page level.



HookSafe
• HookSafe is a hypervisor-based lightweight system that aims to 

achieve large-scale protection of kernel hooks in a guest OS.
• HookSafe solves the protection granularity gap problem by 

creating a shadow copy of the kernel hooks in a centralized 
location.

• Any attempt to modify the shadow copy will be trapped and 
verified by the underlying hypervisor while the regular read access 
will be simply redirected to the shadow copy.



HookSafe



Implementation

• Given a set of kernel hooks for protection, HookSafe achieves its 
functionality in two key steps:
– Offline Hook Profiler
– Online Hook Protector



Offline Hook Profiler
• Offline hook profiler takes in kernel hook inputs and profiles them 

into a hook access files.
• These hook access files contain information such as access type 

and the values associated with it.
• These instructions that access a hook are known as Hook Access 

Points (HAPs).



Offline Hook Profiler
•  



Online Hook Protector
• Taking hook access profiles as input, online hook protector 

creates a shadow copy of all protected hooks and instruments 
HAP instructions such that their accesses will be transparently 
redirected to the shadow copy.

• Shadow hooks are aggregated together in a central location and 
protected from any unauthorized modification.



Online Hook Protector
• To reduce performance overheads, HookSafe handles read and 

write differently.
• Write - transfer control from guest kernel to the hypervisor, update 

the memory, then return control back to the guest kernel.
• Read - use a piece of indirection code residing in the guest OS 

kernel memory to read the corresponding shadow hook.

• Note: read accesses are much more common than write, thus we 
benefit greatly by keeping the command under guest kernel level.



Online Hook Protector
• When read is performed, HookSafe will do a consistency check 

between the original kernel hook and its shadow copy to make 
sure that it has not been compromised. 

• To validate write request, HookSafe requires the new hook value 
to be seen in the offline profiling phase. Other common 
techniques can also be applied here:
– Valid code region
– Valid function value type

• Once the write request has been validated as legitimate, both 
shadow copy and its original hook are updated.



Evaluation
• Two sets of experiments:

– Evaluation of HookSafe's effectiveness against nine real-world 
rootkits

– Evaluation of performance overhead introduced by HookSafe 
on benchmark programs and real-world application



Set up
• HookSafe takes in two sets of kernel hooks input:

– The first set contains 5,881 kernel hooks in preallocated 
memory areas of main linux kernel and dynamically loaded 
kernel modules

– The second set is from 39 kernel objects that will be 
dynamically allocated from kernel heap.

• These hook inputs are obtained through scanning of the data/bss 
sections of the kernel and LKMs in a guest VM running Ubuntu 
Server 8.04.



Effectiveness
• Nine state-of-the-art kernel rootkit:

– Adore-ng, eNYeLKM 1.2, sk2rc2, superkit, Phalanx b6, mood-
nt 2.3, override, Sebek 3.2.0b, and hideme.vfs

• HookSafe successfully prevented all of the rootkits tested from 
modifying the protected  kernel hooks.





Performance
• To evaluate performance overhead introduced by HookSafe, they 

measured the runtime overhead over 10 computer tasks.
• Set up:

– Dell Optiplex 740
– AMD64 X2 5200+
– 2GB memory
– Xen Hypervisor 3.3.0
– Ubuntu server 8.04



Performance



Contribution
• HookSafe is the first system that is proposed to enable large-scale 

hook protection with low performance overhead.
• Extremely credible as it performed well against various advance 

rootkits.
• Overcame the critical challenge of the protection granularity gap.



Weakness
• Construction of hook access profiles may be incomplete.
• Small time lag before detection of inconsistencies between the 

original kernel hooks and their shadow copies.
• Need prior knowledge of the set of kernel hooks that need to be 

protected



Future Work
• Perform both dynamic analysis and static analysis of the source 

code to improve the coverage of finding all the HAPs.
• Combine HookSafe with hook finding applications such as 

HookFinder and HookMap 
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Question?
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