
A Characterization of
Lazy and Eager Semantic Solutions to the

Linda Predicates Ambiguity Problem

Marc L. Smith∗

Computer Science Department, Colby College
Waterville, ME 04901-8858, USA

mlsmith@colby.edu; voice: 207.872.3672; fax: 207.872.3801

Charles E. Hughes†

School of Electrical Engineering and Computer Science
University of Central Florida, Orlando, FL 32816-2362, USA

ceh@cs.ucf.edu; voice: 407.823.2762; fax: 407.823.5419

March 5, 2003

Abstract

The problems associated with Linda predicate operationsinp() andrdp() are well known but not always
well understood. One problem, from a purely academic standpoint, is that of semantic ambiguity in the case
of failure. Despite this problem, commercial tuple space implementations all provide some version of the
Linda predicate operations, and thus, problems concerning safety and liveness arise. Solutions to address
these problems range from proposing extensions to an existing model of computation (CSP) to proposing
alternative definitions for the Linda predicate operations themselves. While these solutions may at first
appear unrelated, it is possible to relate these two disparate approaches in the context of lazy and eager
semantics. The benefits of this characterization include a clearer understanding of the Linda predicates
ambiguity problem, two respective solutions to this problem, and the importance of considering both lazy
and eager semantic perspectives as techniques for problem solving in parallel and distributed systems.

Keywords: Linda predicates, semantic ambiguity, CSP, lazy, eager

1 Introduction

2 Background

This section presents the background information required for characterizing the two solutions to the Linda
predicates ambiguity problem presented in Section 3. First, Section 2.1 gives an overview of the Linda and
Tuple Space model for parallel and distributed computation. Next, Section 2.2 describes the Linda predicate
operations, including the associated ambiguity problem. Finally, Section 2.3 introduces the terminology and
implications of lazy and eager semantics.

∗Presenting author.
†Partially supported by the National Science Foundation under grant EIA 9986051.

1



2.1 Linda and Tuple Space

The tuple space model and Linda language are due to Gelernter [5]. Linda is distinct from pure message
passing-based models (e.g., Actors [2]). Unlike message passing models, tuple space exhibits what Gelernter
called communication orthogonality, referring to interprocess communications decoupled in destination, space,
and time. The tuple space model is especially relevant to discussion of concurrency due to the current popularity
of commercial tuple space implementations, such as Sun’s JavaSpaces [4] and IBM’s T Spaces [10].

Linda is not a complete programming language; it is a communication and coordination language. Linda is
intended to augment existing computational languages with its coordination primitives to form comprehensive
parallel and distributed programming languages. The Linda coordination primitives arerd(), in(), out(), and
eval(). The idea is that multiple Linda processes share a common space, called a tuple space, through which
the processes are able to communicate and coordinate using Linda primitives.

A tuple space may be viewed as a container of tuples, where a tuple is simply a group of values. A tuple is
considered active if one or more of its values is currently being computed, and passive if all of its values have
been computed. A Linda primitive manipulates tuple space according to the template specified in its argument.
Templates represent tuples in a Linda program. A template extends the notion of tuple by distinguishing its pas-
sive values as eitherformal or actual, where formal values, orformals, represent typed wildcards for matching.
Primitivesrd() andin() are synchronous, or blocking operations;out() andeval() are asynchronous.

Therd() andin() primitives attempt to find a tuple in tuple space that matches their template. If successful,
these primitives return a copy of the matching tuple by replacing any formals with actuals in their template. In
addition, thein() primitive, in the case of a match, removes the matching tuple from tuple space. In the case of
multiple matching tuples, a nondeterministic choice determines which tuple therd() or in() operation returns.
If no match is found, these operations block until such time as a match is found. Theout() operation places
a tuple in tuple space. This tuple is a copy of the operation’s template. Primitivesrd(), in(), andout() all
operate on passive tuples.

All Linda processes reside as value-yielding computations within the active tuples in tuple space. Any Linda
process can create new Linda processes through theeval() primitive. Execution of theeval() operation places
an active tuple in tuple space, copied from the template. When a process completes, it replaces itself within
its respective tuple with the value resulting from its computation. When all processes within a tuple replace
themselves with values, the formerly active tuple becomes passive. Only passive tuples are visible for matching
by therd() andin() primitives; thus active tuples are invisible.

Communication orthogonality refers to three desirable attributes that seem particularly well-suited for dis-
tributed computing. Tuple space acts as a conduit for the generation, use, and consumption of information
between distributed processes. First, unlike message passing systems, where a sender must typically specify
a message’s recipient, information generators do not need to know who their consumers will be, nor do infor-
mation consumers need to know who generated the information they consume. Gelernter called this attribute
destination decoupling. Next, since tuples are addressed associatively, through matching, tuple space is a plat-
form independent shared memory. Gelernter called this attributespace decoupling. Finally, tuples may be
generated long before their consumers exist, and tuples may be copied or consumed long after their genera-
tors cease to exist. Gelernter called this attributetime decoupling. Distinct from both pure shared memory and
message passing paradigms, Gelernter dubbed Linda and Tuple space to be a form ofgenerative communication.

2.2 Predicates and Ambiguity

In addition to the four primitivesrd(), in(), out(), andeval(), the Linda definition once included predicate
versions ofrd() andin(). Unlike therd() andin() primitives, predicate operationsrdp() andinp() were
nonblocking primitives. The goal was to provide tuple matching capabilities without the possibility of block-
ing. The Linda predicate operations seemed like a useful idea, but their meaning proved to be semantically
ambiguous, and they were subsequently removed from the formal Linda definition.

2



Predicate operationsrdp() andinp() attempt to match tuples for copy or removal from tuple space. A
successful operation returns the value one (1) and the matched tuple in the form of a template. A failure, rather
than blocking, returns the value zero (0) with no changes to the template. When a match is successful, no
ambiguity exists. It is not clear, however, what it means when a predicate operation returns a zero.

The ambiguity of the Linda predicate operations is subtle and, in general, not well understood; it is a con-
sequence of reasoning about concurrency through an arbitrary interleaving of tuple space interactions. Jensen
noted that when a predicate operation returns zero, “only if every existing process is captured in an interaction
point does the operation make sense.” [8]. For a complete discussion of such an interaction point in tuple space,
see Smithet al. [9]. For more in general about reasoning with interleaved traces, see Hoare’s seminal work in
Communicating Sequential Processes (CSP) [6].

Briefly, the meaning of a failed predicate operation breaks down in the presence of concurrency expressed as
an arbitrary interleaving of atomic events. This breakdown in meaning is due to the restriction of representing
the history of a computation as a total ordering of atomic events. More specifically, within the context of a
sequential event trace, one cannot distinguish the intermediate points between concurrent interleavings from
those of events recorded sequentially. Reasoning about computation with a sequential event trace leads to
ambiguity for failed Linda predicate operations.

2.3 Lazy versus Eager Semantics

Lazy and eager (sometimes,normal-orderandapplicative-order, respectively) are terms typically used to de-
scribe the semantics of particular programming languages, especially in the context of when procedure argu-
ments are evaluated. But, one may refer more generally to expression evaluation, and not be restricted solely
to procedure arguments, when referring to lazy and eager evaluation. There are many facets of lazy and eager
evaluation, but for the purposes of this paper, we will differentiate the respective meanings of lazy and eager
by focusing on the temporal aspects of their definitions. For a more complete discussion of lazy and eager
semantics, see Abelson and Sussman [1].

Briefly, lazy evaluation involves delaying the evaluation of an expression,e, until just before its result is
needed to ensure continued computational progress. The opposite of lazy evaluation is eager evaluation, which
requires the evaluation ofe as soon as it is possible to do so. From a temporal perspective, the only difference
between lazy and eager evaluation iswhene gets evaluated.

Notice thate need not evaluate to some native value, and could, in general, be a data structure, such as a list
or tree. In the case of potentially infinite data structures (e.g., a stream of the natural numbers), eager evaluation
is not feasible, as it would lead to divergence. In such cases, lazy evaluation offers a viable alternative by
supporting lazy data structures. For example, a lazy list could be represented by its first element, and the
promise to evaluate the rest of the list, should more elements ever be needed. Now, from a temporal standpoint,
the difference between lazy and eager evaluation might not only be when, butif e gets evaluated. The point
is, the choice between lazy and eager semantics in expression evaluation potentially affects the meanings of
expressions themselves.

3 A Tale of Two Solutions

This section presents two solutions to the Linda predicates ambiguity problem; one by Jacob and Wood [7], the
other by Smith,et al. [9]. One thing both solutions have in common is their CSP foundation for reasoning about
the meaning of the Linda predicate operations. These solutions are not new, and on the surface, the approaches
they take appear orthogonal to each other. It is possible, however, to characterize one of these approaches as
lazy, and the other,eager. Section 3.1 presents the lazy solution by Jacob and Wood. Section3.2 presents the
eager solution by Smith,et al..

3



3.1 A Lazy Solution

Jacob and Wood’s goal to define ”a principled semantics for inp” arises in part out of frustration that, despite
citing seven sources giving ”informal specifications” for Linda predicate operations, only one specification was
deemed ”useful”! Furthermore, the one useful specification, by Carriero and Gelernter [3], had little or nothing
to say about the meaning of a failed predicate operation. We reproduce the quote here.

If and only if it can be shown that, irrespective of relative process speeds, a matching tuple must
have been added to tuple space before the execution of inp, and cannot have been withdrawn by any
other process until the inp is complete, the predicate operations areguaranteedto find a matching
tuple.

Jacob and Wood set out to define, unambiguously, what failureshouldmean forinp(). They reasoned that
inp() should fail only in situations where it could be provedin() would never find a matching tuple. Such a
situation occurs only in the presence of deadlock. In short, they changed the meaning ofinp(), and issued the
following warning: ”inp() is not a ’non-blocking’ version ofin() — it will block, as in(), until a matching
tuple is retrieved,or until deadlock is detected.”

How is Jacob and Wood’s new definition forinp() lazy? In the case of finding a matching tuple in tuple
space, it’s not. However, from a temporal perspective,inp() no longer returns an indication of failure right
away. It waits. In fact, it could wait a very long time, i.e., block. So long as there is no matching tuple in tuple
space, the only way this version ofinp() ever returns a value is if deadlock is detected. Sinceinp() is capable
of blocking, and only returns an indication of failure in the presence of deadlock – the last possible moment of
computational progress – from a temporal perspective, we could characterize Jacob and Wood’sinp() as lazy.

There are many more implications of this new version ofinp(). For more information, see Jacob and
Wood [7].

3.2 An Eager Solution

Working from Jensen’s [8] operational semantics for Linda and Tuple Space, and his observation about failed
predicates and interaction points in tuple space, Smithet al. [9] chose a different path to disambiguate the Linda
predicate operations. Namely, since the source of the ambiguity was known to be the result of constructing a
computation’s history from the sequential interleaving of concurrent events (as specified by CSP), we sought to
extend the CSP’s notion of a trace (history).

Our extensions to CSP include unordered and ordered parallel events as primitives for constructing a com-
putation’s history, and multiple, possibly imperfect, views. Taken together, these extensions to CSP constitute
important aspects of View-Centric Reasoning (VCR). VCR’s parallel event traces permit disambiguating the
original definitions ofinp() andrdp(). Parallel events, by their nature, capture every existing process involved
in an interaction point in tuple space. Thus, parallel events permit unambiguous interpretation of the meaning of
failed Linda predicate operations. Rather than introduce new definitions for the Linda predicate operations, we
extended the model used to reason about their meaning. For a more complete discussion, see Smith,et al. [?].

How is Gelernter’s original definition ofinp() eager? Simply put, from a temporal perspective,inp()
always returns a value immediately, no matter whether the operation was a success or failure. Gelernter’sinp()
was intended to be a non-blocking version ofin() (similarly for rdp() andrd()), and thus could always have
been considered eager. What’s new is that it no longer needs to be considered ambiguous in the case of failure.

4 Conclusions

We presented two previously unrelated solutions to the Linda predicates ambiguity problem, and characterized
them in terms of lazy and eager semantics. The benefits of this characterization are threefold. First, we identified
a unifying perspective from which to reason about the meaning of Linda predicate operations. Second, we have a

4



semantic basis for classifying and comparing at least two seemingly disparate approaches to solving the problem
of Linda predicate ambiguity. Third, in a broader sense, we are encouraged to revisit, through the lens of lazy
versus eager semantics, issues of safety and liveness in parallel and distributed applications.

5 Acknowledgements

The eager solution to the Linda predicates ambiguity problem was developed in a previous collaboration be-
tween the authors and Dr. Rebecca J. Parsons. The insights into lazy and eager semantics, which permitted the
revelations that led to this paper, were also developed during the same collaboration.

References

[1] H. Abelson and G. J. Sussman.Structure and Interpretation of Computer Programs. The MIT Press,
Cambridge, Massachusetts, second edition, 1996.

[2] G. A. Agha.ACTORS: A Model of Concurrent Computation in Distributed Systems. The MIT Press Series
in Artificial Intelligence. The MIT Press, Cambridge, Massachusetts, 1986.

[3] N. Carriero and D. Gelernter.How to Write Parallel Programs: a First Course. MIT Press, 1990.

[4] E. Freeman, S. Hupfer, and K. Arnold.JavaSpaces Principles, Patterns, and Practice. The Jini Technology
Series. Addison Wesley, 1999.

[5] D. Gelernter. Generative communication in linda.ACM Transactions on Programming Languages and
Systems, 7(1), Jan. 1985.

[6] C. Hoare.Communicating Sequential Processes. Prentice Hall International Series in Computer Science.
Prentice-Hall International, UK, Ltd., UK, 1985.

[7] J. L. Jacob and A. M. Wood. A principled semantics for inp. In A. Porto and G.-C. Roman, editors,
Coordination Languages and Models, volume 1906 ofLecture Notes in Computer Science, pages 51–65,
Berlin, Germany, 2000. Springer Verlag. Coordination 2000: Proceedings of 4th International Conference.

[8] K. K. Jensen. Towards a Multiple Tuple Space Model. PhD thesis, Aalborg University, Nov. 1994.
http://www.cs.auc.dk/research/FS/teaching/PhD/mts.abstract.html.

[9] M. L. Smith, R. J. Parsons, and C. E. Hughes. View-centric reasoning for linda and tuple space compu-
tation. In J. S. Pascoe, P. H. Welch, R. J. Loader, and V. S. Sunderam, editors,Communicating Process
Architectures 2002, volume 60 ofConcurrent Systems Engineering Series, pages 223–254, Amsterdam,
2002. IOS Press.

[10] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford. T spaces.IBM Systems Journal, 37(3):454–
474, 1998.

5


