
View-Centric Reasoning about Space-Based Middleware
Marc L. Smith

Computer Science Department
Colby College

Waterville, Maine, USA
email: mlsmith@colby.edu

Rebecca J. Parsons
ThoughtWorks, Inc.

Chicago, Illinois, USA
email: parsonrj@bp.com

Charles E. Hughes
School of Electrical Engineering

and Computer Science
University of Central Florida

Orlando, Florida, USA

ABSTRACT
Distributed computing systems, including those that uti-
lize space-based middleware, present significant challenges
when attempting to reason formally about their behaviors
and properties. In particular, two or more computational
events may occur in parallel. We introduce View-Centric
Reasoning (VCR)—a set of abstractions that comprises a
general framework for reasoning about parallel and dis-
tributed computation. First we extend the CSP metaphor
to support traces of parallel events, rather than the tradi-
tional random interleaving of individual events. Next we
introduce the concept of views to represent explicitly the
multiple possible perspectives of the same parallel compu-
tation. Finally, we consider an instance of VCR for reason-
ing about Gelernter’s Linda language and tuple space com-
putation, the basis for much of today’s space-based middle-
ware.

KEY WORDS
distributed and parallel systems, general model, observable
events, history, views, reasoning

1 Introduction

We describe a notion of views which allows us to reason
about computation in distributed systems. We define views
in terms of observable events, the details of which may dif-
fer according to the approach taken to distributed comput-
ing. Reasoning about the observable events of a compu-
tation can be an effective way to extract meaning. This
is particularly true in the context of distributed computa-
tion. To support this approach to formal analysis, we have
developed a general, event-based model, which uses opera-
tional semantics to allow us to reason about different paral-
lel and distributed paradigms. In addition to being general,
our model differs from others in that it supports reasoning
about multiple distinct views of the events that occur during
computation,View-Centric Reasoning(VCR).

The inspiration for VCR derives from Hoare’s [2]
seminal work in models of concurrency, Communicating
Sequential Processes (CSP). CSP views concurrency, as its
name implies, in terms of communicating sequential pro-
cesses. A computational process, in its simplest form, is
described by a sequence of observable events. The history
of a computation is recorded by an observer in the form of a

sequential trace of events. Events in CSP are said to be of-
fered by the environment of a computation; therefore, they
occur when a process accepts an event at the same time the
event is offered by the environment. Thus, reasoning about
a system’s trace is equivalent to reasoning about its com-
putation, and event traces provide an effective source for
deriving meaning from computation.

When two or more processes compute concurrently
within an observer’s environment (e.g., a distributed,
shared tuple space), the possibility exists for events to oc-
cur simultaneously. CSP has two approaches to express
event simultaneity in a trace, synchronization and interleav-
ing. Synchronization occurs when an evente is offered by
the environment of a computation, and evente is ready to
be accepted by two or more processes in the environment.
When the observer records evente in the trace of computa-
tion, the interpretation is that all those processes eligible to
accept participate in the event.

The other form of event simultaneity, where two or
more distinct events occur simultaneously, is recorded by
the observer in the event trace via arbitrary interleaving.
For example, if eventse1 ande2 are offered by the envi-
ronment, and two respective processes in the environment
are ready to accepte1 ande2 at the same time, the observer
may record eithere1 followed bye2, or e2 followed bye1.
In this case, from the trace alone, we cannot distinguish
whether eventse1 ande2 occurred in sequence or simulta-
neously. CSP’s contention, since the observer must record
e1 ande2 in some order, is that this distinction is not im-
portant.

Our contention is the loss of information regarding
event simultaneity in CSP traces is significant with respect
to reasoning about properties of distributed computation.
We sought to develop a new model that obviated the need
for sequentialized traces, thus providing a more natural
level of abstraction for reasoning about event simultaneity.
Before we even had a name for VCR, a set of abstractions
emerged as a result of our work to develop a general model.
In Section 2, we describe the general VCR abstractions. In
Section 3, we describe the uninstantiated VCR model. In
Section 4, we instantiate VCR for Gelernter’s Linda lan-
guage and tuple space [1].

2 VCR Concepts

VCR uses a convergence of tools and techniques for mod-
eling different forms of concurrency, including distributed
systems based on space-based middleware. It is designed
to improve upon existing levels of abstraction for reasoning
about properties of concurrent computation. The result is
a model of computation with new and useful abstractions
for describing concurrency and reasoning about properties
of such systems. This section discusses important concepts
needed to understand VCR’s features and the motivations
for their inclusion.

VCR models concurrency using a parameterized op-
erational semantics. The reasons for choosing operational
semantics to develop VCR are twofold. First, an opera-
tional semantics describes how computation proceeds. Sec-
ond, an operational semantics permits choosing an appro-
priate level of abstraction, including the possibility for
defining a parameterized model. The motivation for includ-
ing parameters is to make VCR a general model that can be
instantiated. Each such instance can be used to study and
reason about the properties of some specific parallel or dis-
tributed system within a consistent framework.

From CSP we borrow the practice of event-based rea-
soning and the notion of event traces to represent a com-
putation’s history. The first concept to discuss is that of
events, or, more precisely,observable events. The events
of a system are at a level of abstraction meaningful for
describing and reasoning about that system’s computation.
Events are the primitive elements of a CSP environment.
CSP events serve a dual purpose; they describe the behavior
of a process, and they form an event trace when recorded
in sequence by an observer. CSP represents concurrency
by interleaving the respective traces of two or more con-
currently executing processes. CSP is a process algebra,
a system in which algebraic laws provide the mechanism
for specifying permissible interleavings, and for express-
ing predicates to reason about properties of computation.

One of the great challenges of developing a general
model concerns the identification of common observable
behavior among the variety of possible systems. Interpro-
cess communication is one such common behavior of con-
current systems, even if the specific forms of communica-
tion vary greatly. For example, in message passing sys-
tems, events could be message transmission and delivery;
in shared memory systems, events could be memory reads
and writes. Even among these examples, many more pos-
sibilities exist for event identification. Since VCR is to be
a general model of concurrency, event specification is a pa-
rameter.

CSP is a model of concurrency that abstracts away
event simultaneity by interleaving traces; the CSP alge-
bra addresses issues of concurrency and nondeterminism.
This event trace abstraction provides the basis for our work.
VCR extends the CSP notion of a trace in several impor-
tant ways. First, VCR introduces the concept of apar-
allel event, an event aggregate, as the building block of a

trace. A trace of parallel events is just a list of multisets of
events. Traces of event multisets inherently convey levels
of parallelism in the computational histories they represent.
Another benefit of event multiset traces is the possible oc-
currence of one or more empty event multisets in a trace.
In other words, multisets permit a natural representation
of computation proceeding in the absence of any observ-
able events. The empty multiset is an alternative to CSP’s
approach of introducing a special observable event (τ) for
this purpose.

In concurrent systems, especially distributed systems,
it is possible for more than one observer to exist. Fur-
thermore, it is possible for different observers to perceive
computational event sequences differently, or for some ob-
servers to miss one or more event occurrences. Reasons
for imperfect observation range from network unreliability
to relevance filtering in consideration of scalability. VCR
extends CSP’s notion of a single, idealized observer with
multiple, possibly imperfect observers, and the concept of
views. A view of computation implicitly represents its cor-
responding observer; explicitly, a view is one observer’s
perspective of a computation’s history, a partial ordering
of observable events. Multiple observers, and their corre-
sponding views, provide relevant information about a com-
putation’s concurrency, and the many partial orderings that
are possible.

To describe views of computation in VCR, we intro-
duce the concept of a ROPE, a randomly ordered parallel
event, which is just a list of events from a parallel event.
Because VCR supports imperfect observation, the ROPE
corresponding to a parallel event multiset need not contain
all — or even any — events from that multiset. Indeed,
imperfect observation implies some events may be missing
from a view of computation.

Another consideration for ROPEs is the possibility of
undesirable views. VCR permits designating certain event
sequences as not legitimate, and then constraining permis-
sible ROPEs accordingly. Views of a computation are de-
rived from that computation’s trace. While a trace is a list
of event multisets, a corresponding view is a list of lists
(ROPEs) of events. The structure of a view, like that of a
parallel event, preserves concurrency information. An im-
portant parameter of VCR is the view relation, which per-
mits the possibility of imperfect observation and the desig-
nation of undesirable views.

Parallel events, ROPEs, and the distinction of a com-
putation’s history from its views are abstractions that per-
mit reasoning about computational histories that cannot,
in general, be represented by sequential interleavings. To
see this, assume perfect observation, and assume different
instances of the same event are indistinguishable. Given
these two assumptions, it is not possible to reconstruct the
parallel event trace of a computation, even if one is given
all possible sequential interleavings of that computation.
Thus, while it is easy to generate all possible views from
a parallel event trace, the reverse mapping is not. in gen-
eral, possible. For example, consider the sequential inter-

leaving〈A, A, A, A〉, and assume this trace represents all
possible interleavings of some system’s computational his-
tory. It is not possible to determine from this trace alone
whether the parallel event trace of the same computation is
〈{A,A, A}, A〉 or 〈{A,A}, {A,A}〉, or some other pos-
sible parallel event trace.

The concepts described to this point are the primitive
elements of trace-based reasoning within VCR. What re-
mains are descriptions of the concepts our operational se-
mantics employs to generate parallel events, traces, and
views of concurrent computation. To define an opera-
tional semantics requires identifying the components of a
system’s state, and a state transition relation to describe
how computation proceeds from one state to the next. In
the case of an operational semantics for parallel or dis-
tributed computation, a transition relation often takes the
place of a transition relation due to inherent nondetermin-
ism. When multiple independent processes can make si-
multaneous computational progress in a single transition,
many next states are possible; modeling to which state
computation proceeds in a transition reduces to a nonde-
terministic choice from the possible next states.

Several general abstractions emerge concerning the
components of a system’s state in VCR. The first abstrac-
tion is to represent processes as continuations. A continu-
ation represents the remainder of a process’s computation.
The second abstraction is to represent communications as
closures. A closure is the binding of an expression and the
environment in which it is to be evaluated. The third ab-
straction is to represent observable behavior from the pre-
ceding transition in a parallel event set, discussed earlier in
this chapter. The final abstraction concerning components
of a VCR state is the next (possibly unevaluated) state to
which computation proceeds. Thus, the definition ofstate
in VCR is recursive (and, as the next paragraph explains,
lazy). The specifics of processes and communications may
differ from one instance of VCR to another, but the above
abstractions concerning a system’s components frame the
VCR state parameter.

Lazy evaluation — delaying evaluation until the last
possible moment — is an important concept needed to
understand the specification of a VCR transition relation.
Lazy evaluation emerges in VCR as an effective approach
to managing the inherent nondeterminism present in mod-
els of concurrency. The computation space of a program
modeled by VCR is a lazy tree, as depicted in Figure 1.
Nodes in the tree represent system configurations, or states;
branches represent state transitions. A program’s initial
configuration corresponds to the root node of the tree.
Branches drawn with solid lines represent the path of com-
putation, or the tree’s traversal. Nodes drawn with solid
circles represent the elaborated configurations within the
computation space. Dashed lines and circles in the tree
represent unselected transitions and unelaborated states,
respectively. The transition relation only elaborates the
states to which computation proceeds (i.e., lazy evalua-
tion). Without lazy evaluation, the size of our tree (compu-

σ

σ σ σ

σσσ

σ σ σ

Figure 1. VCR computation space: a lazy tree.

tation space) would distract us from comprehending a sys-
tem’s computation, and attempts to implement an instance
of VCR without lazy evaluation would be time and space
prohibitive, or even impossible in the case of infinite com-
putation spaces.

Each invocation of the transition relation elaborates
one additional state within the VCR computation space.
The result is a traversal down one more level of the lazy
tree, from the current system configuration to the next con-
figuration. The abstraction for selecting which state to
elaborate amounts to pruning away possible next states,
according to policies specified by the transition relation,
until only one selection remains. The pruning occurs in
stages; each stage corresponds to some amount of compu-
tational progress. Two examples of stages of computational
progress are the selection of a set of eligible processes and
a set of communication closures, where at each stage, all
possible sets not chosen represent pruned subtrees of the
computation space. Two additional stages involve select-
ing a sequence to reduce communication closures, and a
sequence to evaluate process continuations. Once again,
sequences not chosen in each of these two steps represent
further pruning of subtrees. The transition relation assumes
the existence of a meaning function to abstract away details
of the internal computation of process continuations. As
well, during the stages of the transition relation, it is pos-
sible to generate one or more observable events. The gen-
erated events, new or updated process continuations, and
new or reduced communication closures contribute to the
configuration of the newly elaborated state. Since the num-
ber of stages and the semantics of each stage may differ
from one instance of VCR to another, the specification of

Table 1. VCR Notation

Notation Meaning
S A concurrent system
S Model ofS
σ, σi Computation space (lazy tree) ofS, or

a decorated state within treeσ
Λ Set of communication closures
λ A communication closure
Υ Set of views
υ A view
ρ A ROPE

the transition relation is a parameter.
One additional VCR parameter transcends the previ-

ous concepts and parameters discussed in this chapter. This
parameter is composition. Implicitly, this section presents
VCR as a framework to model a single concurrent system,
whose configuration includes multiple processes, commu-
nications, and other infrastructure we use to support rea-
soning about computational properties. However, espe-
cially from a distributed system standpoint, a concurrent
system is also the result of composing two or more (possi-
bly concurrent) systems.

Since the desire exists to model the composition of
concurrent systems, one of VCR’s parameters is a compo-
sition grammar. The degenerate specification of this pa-
rameter is a single concurrent system. In general, the com-
position grammar is a rewriting system capable of generat-
ing composition graphs. In these graphs, a node represents
a system and an edge connecting two nodes represents the
composition of their corresponding systems. Each system
has its own computation space, communication closures,
and observers. One possible composition grammar argu-
ment generates string representations of a composition tree,
where each node is a system, and a parent node represents
the composition of its children. Other composition gram-
mars are possible.

3 VCR Uninstantiated

This section presents the uninstantiated VCR model. First,
we introduce helpful notation to understand the subsequent
definitions and discussion. Next, we formalize the concepts
presented previously in Section 2, and lay the foundation
for further formal discussion.

The model presented in this section is denotedS, and
the components forS are described in Table 1. The bar
notation is used to denote elements in the modelS which
correspond to elements in systemS.

In the absence of composition,S is represented by
the 3-tuple〈σ, Λ, Υ〉, whereσ represents the computation
space ofS, Λ represents the set of communication closures
within σ, andΥ represents the set of views of the compu-
tation within σ. The remainder of this section discusses

in greater detail the concepts embedded withinS. In turn,
we cover computation spaces, communication closures, ob-
servable events, traces, and views.

The stateσ is a lazy tree of state nodes. When we re-
fer to the treeσ, we refer toS ’s computation space. Each
node in the tree represents a potential computational state.
Branches in the tree represent state transitions. The root
nodeσ is S ’s start state, which corresponds to a program’s
initial configuration in the system being modeled byS.
State nodes carry additional information to support the op-
erational semantics. The specific elements ofσ vary from
instance to instance of VCR.

Each level of treeσ represents a computational step.
Computation proceeds from one state to the next inσ
through S ’s transition relation. Given a current state,
the transition relation randomly chooses a next state from
among all possible next states. At each transition, the cho-
sen next state inσ is elaborated, and thus computation pro-
ceeds. The logic of the transition relation may vary, but
must reflect the computational capabilities of the system
being modeled byS.

Two special conditions exist in which the transition
relation fails to choose a next state inσ: computational
quiescence and computation ends. Computational quies-
cence implies a temporary condition under which compu-
tation cannot proceed; computation ends implies the condi-
tion that computation will never proceed. Both conditions
indicate that, for a given invocation, the transition relation
has no possible next states. The manner of detecting, or
even the ability to detect, these two special conditions, may
vary.

To model the variety of approaches to parallel and dis-
tributed computation, VCR needs to parameterize commu-
nication. The set of communication closuresΛ is the re-
alization of this parameter, where the elements ofΛ, the
individual closure forms,λ, vary from instance to instance
of VCR.

We define an observable event formally as follows:

Definition 1 (observable event) An observable event is an
instance of input/output (including message passing) be-
havior.

In our research, we further distinguish sequential
events from parallel events, and define them formally as
follows:

Definition 2 (sequential event) A sequential event is the
occurrence of an individual, observable event.

Definition 3 (parallel event) A parallel event is the si-
multaneous occurrence of multiple sequential events, rep-
resented as a set of sequential events.

The history of a program’s computation withinS is
generated by the history function, which traverses the com-
putation spaceσ. We borrow the notion of atrace from
Hoare’s CSP [2], with one significant refinement for dis-
tributed systems: itis possible for two or more observable

events to occur simultaneously. We define sequential and
parallel event traces as follows:

Definition 4 (sequential event trace) A sequential event
trace is an ordered list of sequential events representing the
sequential system’s computational history.

Definition 5 (parallel event trace) A parallel event trace
is an ordered list of parallel events representing the parallel
system’s computational history.

One additional concept proves to be useful for the def-
inition of views. We introduce the notion of a randomly or-
dered parallel event, or ROPE, as a linearization of events
in a parallel event, and define ROPE formally as follows:

Definition 6 (ROPE) A randomly ordered parallel event,
or ROPE, is a randomly ordered list of sequential events
which together comprise a subset of a parallel event.

VCR explicitly represents the multiple, potentially
distinct, views of computation withinS. The notion of
a view in VCR is separate from the notion of a trace. A
view of sequential computation is equivalent to a sequen-
tial event trace, and is therefore not distinguished. We de-
fine the notion of a view of parallel computation formally
as follows:

Definition 7 (view) A view, υ, of a parallel event trace,
tr , is a list of ROPEs where each ROPE,ρ, in υ is derived
from ρ’s corresponding parallel event in atr .

Thus, views of distributed computation are represented at
the sequential event level, with the barriers of ROPEs, in
VCR; while traces are at the parallel event level.

There are several implications of the definition of
ROPE, related to the concept of views, that need to be dis-
cussed. First, a subset of a parallel event can be empty,
a non-empty proper subset of the parallel event, or the en-
tire set of sequential events that represent the parallel event.
The notion of subset represents the possibility that one or
more sequential events within a parallel event may not be
observed. Explanations for this phenomenon range from
imperfect observers to unreliability in the transport layer
of the network. Imperfect observers in this context are not
necessarily the result of negligence, and are sometimes in-
tentional. Relevance filtering, a necessity for scalability in
many distributed applications, is one example of imperfect
observation.

The second implication of the definition of ROPE
concerns the random ordering of sequential events. A
ROPE can be considered to be a sequentialized instance
of a parallel event. That is, if an observer witnesses the oc-
currence of a parallel event, and is asked to record what he
saw, the result would be a list in some random order: one
sequentialized instance of a parallel event. Additional ob-
servers may record the same parallel event differently, and
thus ROPEs represent the many possible sequentialized in-
stances of a parallel event.

Fυ : view × state −→ view
Fυ(υ, σ) =

if υ empty
V (σ)

else
append((head(υ)),Fυ(tail(υ),nextstate(σ)))

V : state −→ view
V (σ) =

if σ undefined
()

else
let viewSet ⊆ getP(σ)
in let ρ = list(viewSet)
in random choice of{

append((ρ),V (nextstate(σ)), or

(ρ)

Figure 2. VCR View Relations

ElementΥ of S is a set of views. Eachυ in Υ is a
list of ROPEs that represents a possible view of computa-
tion. Letυi be a particular view of computation inΥ. The
jth element ofυi , denotedρj , is a list of sequential events
whose order represents observerυi ’s own view of compu-
tation. Elementρj of υi corresponds to thejth element of
S ’s trace, or thejth parallel event. Any ordering of any
subset of thejth parallel event ofS ’s trace constitutes a
ROPE, or valid view, of thejth parallel event.

We express the view relation with a pair of relations
as shown in Figure 2. Instances of the view relation dif-
fer only by the definitions of their respective statesσ. The
view relationFυ traverses its input viewυ and treeσ, until
an unelaborated ROPE is encountered inυ. Next,Fυ calls
relationV to continue traversingσ, for some random num-
ber of transitions limited so as not to overtake the current
state of computation. WhileV continues to traverseσ, it
also constructs a subsequent viewυ′ to return toFυ. For
each state traversed, the correspondingρi in υ′ is a random
linearization of a random subset ofP. Upon return,Fυ

appendsυ′ to the end ofυ, thus constructing the new view.

4 VCR for Linda, Tuple Space

This section describes VCR instantiated for Linda and tu-
ple space. For an equivalence proof between our semantics
and the work by Jensen [3], see Smith [4]. Section 4.1
discusses the evolution of VCR’s semantics for Linda, in-
cluding definitions and notation.

4.1 Instance Evolution and Definitions

LetS denote tuple spaceS ’s correspondingPTS model. It
remains to define the structure of statesσ within S, the tran-

sition relationFδ of S, and what constitutes an observable
event inS. We begin our discussion with the structure of
σ. A stateσ is represented by the 4-tuple〈A, T ,P, σnext〉,
whereA represents the multiset of active tuples,T repre-
sents the multiset of passive tuples,P represents the par-
allel event multiset, andσnext is eitherundefined , or the
state to which computation proceeds, as assigned by the
transition relation.

We introduce a mechanism to refer to specific tu-
ples in a multiset of a state. To access members of
the ith state’s multiset of active tuples, considerσi =
〈Ai , T i ,P i , σi+1 〉. Elements ofAi can be ordered
1, 2, . . . , |Ai |; let t1, t2, . . . , t|Ai | represent the correspond-

ing tuples. The fields of a tupletj , for 1 ≤ j ≤ |Ai |, can
be projected astj [k], for 1 ≤ k ≤ |tj |. See Figure 3 for the
domain specification of states, tuples, and fields.

The VCR semantics for Linda and tuple space clas-
sifies the type of a tuple field as either active, pending, or
passive. An active field is one that contains a Linda process
making computational progress. A pending field contains a
Linda process executing a synchronous primitive, but still
waiting for a match. A passive field is one whose final
value is already computed. Tuplet is active if it contains at
least one active or pending field, otherwiset is passive. An
active tuple becomes passive, and thus visible for matching
in tuple space, when all of its originally active or pending
fields become passive.

Multiple possible meanings of an individual Linda
process’s computation exist, when considered in the con-
text of the multiple Linda processes that together comprise
tuple space computation. Each state transition represents
one of the possible cumulative meanings of the active or
pending tuple fields making computational progress in that
transition. The parameterized operational semantics permit
experimenting with different combinations of scheduling
policies to reason about resulting properties of computa-
tion. We address these many possible individual and cu-
mulative meanings in more detail in Smith [4].

4.2 Semantics for Linda

VCR for Linda extends the syntax of the Linda primitives
with a tuple space handle prefix. This handle can refer to
the tuple space in which the issuing Linda process resides
(i.e. “self”), or it can be a tuple space handle acquired by
the issuing Linda process during the course of computation.
The use of a tuple space handle is consistent with commer-
cial implementations of tuple space. The existence of this
handle supports tuple space composition. Tuple space han-
dles are nothing more than values, and may thus reside as
fields within tuples in tuple space. In the absense of compo-
sition, acquiring a tuple space handleh reduces to matching
and copying a tuple that containsh as one of its values.

We present the operational semantics of VCR for
Linda in Smith [4], but for the purposes of our discussion,
present the domain specification in Figure 3. In this section,

we give an overview of the transition relation, focusing on
important aspects of tuple space computation. The view
relation in VCR for Linda remains as specified in Figure 2.

Computation proceeds through invocation of the tran-
sition relationFδ. Fδ takes a pair of arguments, treeσ
and the set of communication closuresΛ. There are two
phases in a transition: the inter-process phase and the intra-
process phase. The inter-process phase, or communication
phase, concerns the computational progress of the Linda
primitives in Λ. The intra-process phase, or computation
phase, concerns the computational progress of active Linda
processes withinσcur . Fδ returnsσnew with one more state
elaborated, and the resulting new set of communication clo-
suresΛnew .

During the communication phase of transition, the
transition relation chooses a random subset of communi-
cation closures fromΛ to attempt to reduce. Each com-
munication closure represents the computational progress
of an issued Linda primitive. The domain specification
for the different closure forms is included in Figure 3. To
an observer of computation, these closures make compu-
tational progress in parallel. Within the VCR semantics,
Linda primitives are scheduled sequentially via a randomly
ordered list to model the nondeterminism of race conditions
and the satisfaction of tuple matching operations among
competing synchronous requests. Upon completion of the
communication phase within the transition relation,Λ re-
flects one possible result of reducing the communication
closures.

To better understand the functions that reduce clo-
sures inΛ, we take a moment to examine more closely the
closure domain from Figure 3. The closure domains that
form closure characterize the stages through which com-
munication activity proceeds in tuple space. The form of
closure domainsasynchCl , synchCl , andsendCl specifies
that a lambda expressionλ be sent to a designatedΛ set.
Closures from domainsasynchCl andsynchCl explicitly
delay the evaluation ofλ; domainsendCl explicitly forces
the evaluation ofλ. The designation of theΛ set is through
a tuple space handle. The notion of sending a closure, and
the notion of tuple space handles, both derive from our on-
going research in tuple space composition. The processing
of thesend closure results in the set union of theΛ desig-
nated byhandle and the singleton set containing element
λ.

As communication closures are reduced during a
transition, active and passive tuples are added and re-
moved fromA andT , respectively, for a designated han-
dle’s tuple space, according to the definitions of the re-
spective Linda primitives. At the same time, observable
events are added toP according to the meaning of the re-
spective Linda primitive as follows:’Ecreated upon
completion of anout(t), ’Ecopied upon completion
of a rd(t), ’Econsumed upon completion of anin(t),
’Egenerating upon the initiation of aneval(t), and
’Egenerated upon the completion of aneval(t). Fi-
nally, reduction of the synchronous closures cause the issu-

Var Domain Domain Specification
S system state × closureSet × viewSet
σ state tupleSet × tupleSet×

parEventSet × state

Λ closureSetP (closure)

Υ viewSet P (view)

〈σ,Λ〉 SCSPair state × closureSet

A, T tupleSet P (tuple)

P parEventSet

P (seqEvent)

LProcs LprocSet P (int×int)

t, tj tuple list(field)
tj [k] field fieldtype × data

seqEvent etype × tuple
etype {’Ecreated , ’Ecopied , ’Econsumed ,

’Egenerating , ’Egenerated }

tj [k].type fieldtype {’Active, ’Pending, ’Passive}

tj [k].contents
data beh

⋃
Base

⋃
Formal

ψ beh continuation (unspecified)
Base base types (unspecified)
Formal ?Base

λ, closure asynchCl
⋃

synchCl
⋃

lambda sendCl
⋃

matchCl
⋃

reactCl
⋃

asynchLPrim

asynchCl { “send(handle, delay(lambda)) ” |
handle denotes tuple space

∧
lambda ∈ asynchLPrim}

synchCl { “send(handle, delay(lambda)) ” |
handle denotes tuple space

∧
lambda ∈ sendCl}

sendCl { “send(self, force(lambda)) ” |
self denotes tuple space

∧
lambda ∈ matchCl}

matchCl { “ (let t = force(lambda)
in delay(lambda2)) ” |

lambda ∈ synchLPrim
∧

lambda2 ∈ reactCl}

reactCl { “ react(j,k,t) ” }

asynchLPrim
{eval(template), out(template)}

synchLPrim
{rd(template), in(template)}

υ view list(ROPE)
ρ ROPE list(seqEvent)

Figure 3.PTS Domain Specification.

ing Linda processes to change type from active to pending
upon initiation and from pending to active upon comple-
tion.

During the second phase of a transition,Fδ chooses
a random subset of active Linda processes to make com-
putational progress. To an observer of computation, these
processes make computational progress in parallel. Inter-
nal to Fδ, Linda processes are sequentially scheduled at
random. The sequence doesn’t matter, since during this
intra-process phase of transition, no tuple space interac-
tions occur. Upon completion of the computation phase of
the transition relation,σnew reflects the new continuations
of the subset of Linda processes chosen to make compu-
tational progress, andΛ potentially contains new closures
corresponding to any newly issued Linda primitives.

5 Conclusions

We pointed out the difficulties associated with reasoning di-
rectly about event simultaneity using interleaved traces. We
then presented View-Centric Reasoning, a general frame-
work that extends the CSP trace metaphor with event ag-
gregates that obviate the need to sequentialize concurrency.
The VCR framework distinguishes a computation’s history
from its multiple, possibly imperfect views. VCR provides
a rich set of abstractions for modeling the state, communi-
cation closures, and observers of a distributed system. We
discussed an instance of VCR to model Linda and tuple
space, the basis for today’s space-based middleware. Our
presentation included a domain specification that alludes
to substantial work in the area of tuple space composition,
the details of which remain to be presented in a future pa-
per. For further discussion concerning the utility and im-
portance of VCR, see Smith,et al. [5].

References

[1] D. Gelernter. Generative communication in linda.ACM
Transactions on Programming Languages and Systems, 7(1),
Jan. 1985.

[2] C. Hoare. Communicating Sequential Processes. Prentice
Hall International Series in Computer Science. Prentice-Hall
International, UK, Ltd., UK, 1985.

[3] K. K. Jensen. Towards a Multiple Tuple Space
Model. PhD thesis, Aalborg University, Nov.
1994. http://www.cs.auc.dk/research/FS/teaching/PhD/-
mts.abstract.html.

[4] M. L. Smith. View-Centric Reasoning about Parallel
and Distributed Computation. PhD thesis, University of
Central Florida, Dec. 2000. http://www.cs.ucf.edu/ ml-
smith/abstract.html.

[5] M. L. Smith, R. J. Parsons, and C. E. Hughes. View-centric
reasoning about modern computing systems. InThird In-
ternational Conference on Communications in Computing.
CSREA Press, 2002.

