
View-centric reasoning for Linda and Tuple
Space computation

M.L. Smith, R.J. Parsons and C.E. Hughes

Abstract: In contrast to sequential computation, concurrent computation gives rise to parallel
events. Efforts to translate the history of concurrent computations into sequential event traces
result in the potential uncertainty of the observed order of these events. Loosely coupled
distributed systems complicate this uncertainty even further by introducing the element of
multiple imperfect observers of these parallel events. Properties of such systems are difficult to
reason about and, in some cases, attempts to prove safety or liveness lead to ambiguities. The
authors present a survey of challenges of reasoning about properties of concurrent systems. They
then propose a new approach, view-centric reasoning, that avoids the problem of translating
concurrency into a sequential representation. Finally, they demonstrate the usefulness of view-
centric reasoning as a framework for disambiguating the meaning of Tuple Space predicate
operations, versions of which exist commercially in IBM’s T Spaces and Sun’s JavaSpaces.

1 Introduction

‘The greatest problem with communication is the illusion it
has been accomplished’-George Bernard Shaw

Commonly employed models of concurrent systems fail to
support reasoning that accounts for multiple inconsistent
and imperfect observers of a system’s behaviour. We
overcome these limitations with a new framework, called
view-centric reasoning (VCR) [1, 21, that addresses issues
arising from inconsistent and imperfect observation. This
paper assumes a familiarity with the Linda and Tuple
Space communication and co-ordination paradigm, due
to Gelernter [3]; and the communicating sequential
processes (CSP) model of concurrency, due originally to
Hoare [4], with more recent contributions by Roscoe [5]
and Schneider [6].

The nondeterminism of multiple communicating
distributed processes leads to a potentially intractable
combinatorial explosion of possible behaviours. By
considering the sources of nondeterminism in a distributed
system, the policies and protocols that govern choice, and
the possible traces and views that result, one can utilise the
VCR framework to reason about the behaviour of instances
of extremely diverse distributed computational models.

VCR is a new model of computation that extends the
CSP metaphor of an event trace. VCR uses a convergence
of tools and techniques for modelling different forms of
concurrency. It is designed to improve upon existing levels

0 IEE, 2003
IEE Proceedings online no. 20030129
Dol: 10.1049/ip-sen:20030129
Paper received 12th July 2002
M.L. Smith is with the Computer Science Department, Colby College,
Waterville, ME 04901-8858, USA
R.J. Parsons is with Thoughtworks, Inc., Chicago, IL, 60661, USA
C.E. Hughes is with the School of Electrical Engineering and Computer
Science, University of Central Florida, Orlando, FL, 328 16-2362, USA

IEE Proc.-Softw., Vol. 150, No. 2, April 2003

of abstraction for reasoning about properties of concurrent
computation. The result is a model of computation with
new and usefiil abstractions for describing concurrency and
reasoning about properties of such systems.

In concurrent systems, especially distributed systems, it
is possible for more than one observer to exist. Further-
more, it is possible for different observers to perceive
computational event sequences differently, or for some
observers to miss one or more event occurrences. Reasons
for imperfect observation range! from network unreliability
to relevance filtering in consideration of scalability. VCR
extends CSP’s notion of a single, idealised observer with
multiple, possibly imperfect, observers, and the concept of
views. A view of computation implicitly represents its
corresponding observer; explicitly, a view is one observer’s
perspective of a computation’s history, a partial ordering of
observable events. Multiple observers, and their corre-
sponding views, provide relevant information about a
computation’s concurrency, and the many partial orderings
that are possible.

VCR models concurrency using a parameterised opera-
tional semantics. The reasons for choosing operational
semantics to develop VCR are twofold. First, an opera-
tional semantics describes how computation proceeds.
Second, an operational semantics permits choosing an
appropriate level of abstraction, including the possibility
for defining a parameterised model. The motivation for
including parameters is to make VCR a general model that
can be instantiated. Each such instance can be used to
study and reason about the properties of some specific
parallel or distributed system within a consistent frame-
work. The focus of this paper is on an instance of VCR for
Linda and Tuple Space computation.

2 View-centric reasoning

This section presents the VCR framework in two parts.
Section 2.1 introduces the uninstantiated VCR model.
Section 2.2 presents VCR instantiated for Linda and

71

Table 1: VCR notation

Notation Meaning

S A concurrent system
s Model of S
CT, 0,

A Set of communication closures
i, A communication closure
i- Set of views
V A view
P A ROPE

,

Computation space (lazy tree) of S, or a
decorated state within tree 0

a trace: one another a third
possible view: possible view: possible view:

h 1 i)

Fig. 2 VCR concepts: parallel events, ROPEs, trace and views

Tuple Space. The actual operational semantics described in
Section 2.2.2 can be found in the Appendix (Section 8).
The topic of composition arises in this section, but is
otherwise deferred until Section 3.

2.7 VCR uninstantiated
This section presents the uninstantiated VCR model, S.
The notation and definitions provided lay the foundation
for further formal discussion in this-section’s remaining
subsections. The components for S are described in
Table 1. The_ bar notation is used to denote elements in
the model S which correspond to elements in some
concurrent system S.

In the abse_nce_ of composition, S is represented by the
3-tuple ((T, b, Y), where cr represents the computation
space of S, A represents the set of communication closures
within c, and Y represents the set of views of the
computation within cr. The remainder of this section
discusses in greater detail the concepts embedded
within S. In turn, we cover computation spaces, commu-
nication closures, observable events, traces and views.

The state cr is a lazy tree of state nodes, as depictedjn
Fig. 1. When we refer to the tree cr, we refer to S’s
computation space. Each node in the tree represents a
potential computational state. Branches in the tree repre-
sent state transitions. The root node cr is S’s start state,
which corresponds to a program’s initial configuration in
the system being modelled by S. State nodes carry
additional information to support the operational seman-
tics. The specific elements of cr vary from instance to
instance of VCR.

Each level of tree cr represents a computational step.
ComputaLion proceeds from one state to the next in c
through S’s transition relation. Given a current state, the
transition relation randomly chooses a next state from

Fig. 1

12

VCR computation space: a lazy tree

among all possible next states. At each transition, the
chosen next state in 0 is elaborated, and thus computation
proceeds. The logic of the transition relation may vary, but
must reflect the computational capabilities of the system
being modelled by S.

To niodel the variety of approaches to parallel and
distributed computation, VCR needs to parameteLise
communication. The set of communication closures A 1s
the realisation of this parameter, where the elements of A,
the individual closure forms, A, vary from instance to
instance of VCR.

The ’VCR concepts of parallel events, ROPEs, a compu-
tation’s trace, and its corresponding views are depicted-
using shape primitives for events-in Fig. 2. Because VCR
supports imperfect observation, the ROPE corresponding
to a parallel event multiset need not contain all-or even
any-events from that multiset. Indeed, imperfect observa-
tion implies some events may be missing from a view of
computation.

Next, we build up these VCR concepts formally, begin-
ning with CSP’s notion of observable events. We define an
observable event formally as follows:

Definition I (observable event): An observable event is an
instance of input/output (including message passing:)
behaviour.

In our research, we further distinguish sequential events
from parallel events, and define them formally as follows:

Definition 2 (sequential event): A sequential event is the
occurrence of an individual, observable event.

De$nition 3 (parallel event): A parallel event is the
simultaneous occurrence of multiple sequential events,
represented as a set of sequential events.

We borrow the notion of a trace from Hoare’s CSP [4],
with one significant refinement for distributed systems: it is
possible for two or more observable events to occur
simultaneously. The history of a program’s computation
within S is manifested by a stream whose input is the
computation space 0 and whose output is a parallel event
trace. We define sequential and parallel event traces as
follows:

DeJnition 4 (sequential event trace): A sequential event
trace is an ordered list of sequential events representing the
sequential system’s computational history.

Definition 5 (parallel event trace): A parallel event trace is
an ordered list of parallel events representing the parallel
system’s computational history.

One additional concept proves to be useful for the
definition of views. We introduce the notion of a randomly
ordered parallel event, or ROPE, as a linearisation of
events in a parallel event, and define ROPE formally as
follows:

IEE Proc.-Softw., Vol. 150, No. 2. April 2003

Dejnition 6 (ROPE): A randomly ordered parallel event, or
ROPE, is a randomly ordered list of sequential events
which together comprise a subset of a parallel event.

VCR explicitly represents the multiple, potentially
distinct, views of computation within S. The notion of a
view in VCR is separate from the notion of a trace. Aview of
sequential computation is equivalent to a sequential event
trace, and is therefore not distinguished. We define the
notion of aview ofparallel computation formally as follows:

De3nition 7 (view): Aview, v, of a parallel event trace, tr, is
a list of ROPEs, where each ROPE, p , in v is derived from
p’s corresponding parallel event in a tr.

Parallel events, ROPEs, and the distinction of a computa-
tion’s history from its views are abstractions that permit
reasoning about computational histories that cannot, in
general, be represented by sequential interleavings. To see
this, assume perfect observation, and assume that different
instances of the same event are indistinguishable. Given these
two assumptions, it is not possible to reconstruct the parallel
event trace of a computation, even if one is given all possible
sequential interleavings of that computation. Thus, while it is
easy to generate all possible views from a parallel event
trace, the reverse mapping is not, in general, possible. For
example, consider the sequential interleaving (A, A , A, A) ,
and assume this trace represents all possible interleavings of
some system’s computational history. It is not possible to
determine from this trace alone whether the parallel event
trace ofthe same computation is ({ A , A, A } , { A }) or ({ A , A } ,
{ A , A }) , or some other possible parallel event trace.

There are several implications of the definition of ROPE,
related to the concept of views, that need to be discussed.
First, a subset of a parallel events can be empty, a non-
empty proper subset of the parallel event, or the entire
set of sequential events that represent the parallel event.
The notion of subset represents the possibility that one or
more sequential events within a parallel event may not be
observed. Explanations for this phenomenon range from
imperfect observers to unreliability in the transport layer of
the network. Imperfect observers in this context are not
necessarily the result of negligence, and are sometimes
intentional. Relevance filtering, a necessity for scalability
in many distributed applications, is one example of imper-
fect observation.

F,,: view x stute+view

F“(0. a) =

if v empty
V (0)

else

uppend((heud(u)) , FF,(/uil(u) , ne-x/.s/ute(cT)))

V ; stlrte- view
V(u) =

0

let viewset c getP(a)
in let p = list(viewSet)
in random choice of

if undefined

else

ap,uend((p), V(nex/stu/e(u)), or

Fig. 3 VCR view functions

IEE Proc.-SoftM!, Vol. 150, No. 2, April 2003

The second implication of the definition of ROPE
concerns the random ordering of sequential events. A
ROPE can be considered to be a sequentialised instance
of a parallel event. That is, if an observer witnesses the
occurrence of a parallel event, and is asked to record what
he saw, the result would be a list in some random order:
one sequentialised instance of a parallel event. Additional
observers may record the same parallel event differently,
and thus ROPEs represent the many possible sequentia-
lised instanc_es of a parallel event.

Element Y of S is a set of views. Each v in P is a list of
ROPES that represents a possible view ofcomputation. Let
v, be a particular view of computation in Y. The jth element
of vl, denoted p,, is a list of sequential events whose order
represents observer v,’s own view of computation. Element
p, ofv , corresponds to the jth element of S’s trace, or the
jth parallel event.-Any ordering of any subset of the j th
parallel event of S’s trace constitutes a ROPE, or valid
view, of the jth parallel event.

We express the view relation with two functions as
shown in Fig. 3. Instances of the view relation differ
only by the definitions of their respective states cr. The
view relation 3, traverses its input view v and tree o, until
an unelaborated ROPE is encountered in v. Next, 3, calls
relation V to continue traversing cr, for some random
number of transitions limited so as not to overtake the
current state of computation. While V continues to traverse
cr, it also constructs a subsequent view v’ to return to Fv.
For each state traversed, the corresponding pz in v’ is a
random linearisation of a random subset of P. Upon return,
3, appends v’ to the end of v, thus constructing the new
view

2.2 VCR for Linda, Tuple Space
This section presents VCR’s operational semantics instan-
tiated for Linda and Tuple Space (VCR”). We describe the
operational semantics for Linda using the programming
language Scheme. For an equivalence proof between our
semantics and the TSspec operational semantics by Jensen
[7], see Smith [I]. Sections 2.2.1 and 2.2.2 present the
definitions, notation and operational semantics of VCRTs.

2.2.1 Definitions and notation: Let denote Tuple
Space S’s corresponding VCRTS representgtion. It remains
to define the stpcture of states r~ within S, the transition
relation 30 of S, and what constitutes an observable event
in S. We begin our discussion with the s_truc_ture_ of r ~ . A
state cr-is represented by the 4-tuple (A, I, P, crnext),
where A represents the multiset of active-tuples, 7 repre-
sents the multiset of passive tuples, P represents the
parallel event multiset, and cne,yl is either undefined, or
the state to which computation proceeds, as assigned by the
transition function relation.

We introduce a mechanism to refer to specific tuples in a
multiset of a state. To access members-of the i_th state’s
multiset of active tuples, consider oi= {Ai, ‘Ti, Pi, cri+,).
Elements- of d,. can be ordered 1, 2, . . ., Idi/; let t , ,
t 2 , . . . , tlAil represent the corrgsponding tuples. The
fields of a tuple $, for 1 sj< IAil, can be projected as
!,[k], for 1 < k i 191. See Fig. 4 for the domain specification
of states, tuples and fields.

VCRTs classifies the type of a tuple field as active,
pending or passive. An active field is one that contains a
Linda process making computational progress. A pending
field contains a Linda process executing a synchronous
primitive, but still waiting for a match. A passive field
is one whose final value is already computed. Tuple t is

13

var
S
sigma (0)

&Bar (A)
Y
statellbar, (0, A)
ABar (A), TBar (7)
PBar (P)
LProcs
t, tsubj, template

field. t ype
field.con t en t s

closure, lambda, 3,

upsilon, u
rho, P

Domain
system
state

closureset
viewset
SCSPair
tupleset
parEventSet
LprocSet
tuple
field
seqEvent
etype
fieldtype
data
beh
Base
Formal
closure
asynch Cl

synchCl

sendCl

matchel

reactCl
asynchLPrim
synchLPrim
view
ROPE

Fig. 4 VCRTs domain specification

Domain specification
state x closureset x viewset
tupleset x tupleset x parEventSet x state
I undefined

~ (C / O . ~ U “)

p(v1evv)

state x closureset
S(W4
s(arqi7vent)

t (i n d xinr)

list(field)
jjeldwpe x data
etype x tuple
(’Ecreated, ‘Ecopied, ’Econsumed, ’Egenerating, ’Egenerated}
{ ‘Active, ’ Pending, ’ Passive}
beh u Base u Formal
continuation (unspecified)
base types (unspecified)
?Base
qsynchC1 (J synchCl u sendC1 u matchel u reactel u asynchLPrim
{“send(handle, delay(1ambda)) ” I
handle denotes tuple space A
lambda E asynchlPrim}

handle denotes tuple space A
lambda E sendel}

sldf denotes tuple space A
lambda E matchCl}

(“(let t = force(1ambda)

lambda E synchLPrim p,
lambda2 E reactC1)

{‘‘send (handle, delay (lambda)) ” I

{“send (self, force (lambda)) ” I

in delay (lambda2 1) ” I

{“react (j , k, t) ” }
{eval (template) ,out (template) }
{rd (template) , in (template) }
&(ROPE)
list(seqEvent)

active if it contains at least one active or pending field,
otherwise t is passive. An active tuple becomes passive,
and thus visible for matching in Tuple Space, when all of
its originally active or pending fields become passive.

Multiple possible meanings of an individual Linda
process’s computation exist, when considered in the
context of the multiple Linda processes that together
comprise Tuple Space computation. Each state transition
in VCRTs represents one of the possible cumulative mean-
ings of the active or pending tuple fields making computa-
tional progress in that transition. We address these many
possible individual and cumulative meanings when we
describe the transition relation.

2.2.2 Operational semantics for Linda: VCRTs
extends the syntax of the Linda primitives with a Tuple
Space handle prefix. This handle can refer to the Tuple
Space in which the issuing Linda process resides (Le.
‘self’), or it can be a Tuple Space handle acquired by the
issuing Linda process during the course of computation.
The use of a Tuple Space handle is consistent with
commercial implementations of Tuple Space. The existence
of this handle is explained when we discuss Tuple Space
composition later in this section. Tuple Space handles are
nothing more than values, and may thus reside as fields
within tuples in Tuple Space. In the absence of composition,
acquiring a Tuple Space handle h reduces to matching and
copying a tuple that contains h as one of its values.

14

We present the Scheme-based semantics of VCRTs in
detail in this section. Not all of the Scheme functions that
appear in Figs. 5-9 and Fig. 12 are discussed at the same
level of detail. We give an overview of the transition and
view relations, focusing on important aspects of Tuple
Space computation and view generation. Fig. 4 contains
the domain specification for the operational semantics
described in this section.

Computation proceeds in this instance of VCR
through invocation of the transition relation F - d e l t a .
F - del t a takes a pair ~Earguments, tree 0 and the set of
communication closures A, and elaborates the next state in
the trace of 0. There are two phases in a VCRTs transition:
the inter-process phase and the intra-process phase. The
inter-process phase, or communication phase, specified by
F - LanibdaBar, conccrns the computational progress of
the Linda primitives in A. The intra-process phase, specified
by G, concerns the computational progress of active Linda
processes within ccur. F - de l t a returns the pair containing
the elaliorated tree-on,, and the resulting new set of commu-
nication closures A,,, ,

During the first phase of a VCRTs transition, function
F - LanibdaBar ch-ooses a random subset of communica-
tion closures from A to attempt to reduce. In VCRTs, each
communication closure represents the computational
progress of an issued Linda primitive. The domain speci-
fication for the different closure forms is included in Fig. 4.
From the perspective external to F - LambdaBar, these
closures make computational progress in parallel. Linda

IEE Proc -Sofm. Vol 150, No 2, April 2003

(define F-delta
(lambda (state-LBar)

(let ((sigma (get-state state-LBar)) (LBar (get-LBar state-LBar)))
(let ((sigmacur (get-cur-state sigma)))

(let ((new-state-LBar (G (F-LambdaBar
(list sigmacur LBar)))))

(let ((newsigma (get-state new-state-LBar))
(newLBar (get-LBar new-state-LBar)))

(list (elaborate-sigma sigma newsigma) (newLBar))))))))

(define get-cur-state
(lambda (sigma)

(let ((next-sigma (get-next-state sigma)))
(if (nul 1 ? next- s igma)

sigma
(get-cur-state next-sigma)))))

(define elaborate-sigma
(lambda (sigma newsigma)

(let ((Abar (get-Abar sigma))
(Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma))
(next-sigma (get-next-state sigma)))

(make-state Abar Tbar Pbar newsigma)
(make-state Abar Tbar Pbar

(if (null? next-sigma)

(elaborate-sigma
next-sigma newsigma))))))

(define F-LambdaBar
(lambda (s tate-LBar)

(let ((sigma (get-state state-LBar))

(let ((Abar (get-Abar sigma))
(LBar (get-LBar state-LBar)))

(Tbar (get-Tbar sigma))
(randclosures

(get-rand-subset LBar)))
(reduce-a1 1
(as-list randclosures)
(list (make-state Abar Tbar ‘ . () ‘ 0)
(set-diff LambdaBar randclosures)))))))

(define reduce-all
(lambda (closures state-LBar)

(if (null? closures)
(s tate-LBar)
(reduce-all (cdr closures) (reduce-l (car closures) state-LBar)))))

Fig. 5 VCRTSoperationalsemantics. Functions: F-delta, get -cur- state, elaborate- sigma, F-LambdaBar, reduce-all

primitives are scheduled via a randomly ordered list to
model the nondeterminism of race conditions and the
satisfaction of tuple matching operations among competing
synchronous requests. F - LambdaBar returns a o-A pair
representing one possible result of reducing the commu-
nication closures.

To better understand the fimctions that reduce closures in
A, we take a moment to examine more closely the closure
domain from Fig. 4. The closure domains that form closure
characterise the stages through which communication activity
proceeds in Tuple Space. The form of closure domains
asynchC1, synchCl and sendel specifies that a lambda
expression 1 be sent to a designated A set. Closures from
domains asynchCl and synchCI explicitly delay the evaluation
of 2; domain sendcl explicitly forces the evaluation of 2. The
designation of the A set is through a Tuple Space handle. The
notion of sending a closure, and the notion of Tuple Space
handles, both derive from our ongoing research in Tuple
Space composition. The processing of the send closure results
in the set union of the A designated by handle and the
singleton set containing element A.
IEE Proc.-Sofm., Vol. 1.50, No. 2, April 2003

Functions reduce - o u t and reduce - e v a l bot&
take an asynchronous communicati_on closure and a o-A
pair as arguments, and return a o-A pair. The reduce-
o u t function adds a passive tuple to Tuple Space, and
generates event ’ Ecrea ted . Similarly, reduce - e v a l
adds an active tuple to Tuple Space, and generates event
’ Egenerat ing.

Function reduce - send returns an updated G-A pair.
In the case of delayed evaluation, reduce-send adds the send
argument of 2 to A. Otherwise, evaluation of the send
argument of 2 is forced, and reduce - send attempts to
reduce the let expression containing a synchronous Linda
primitive. The let expression fails to reduce if there is no
match in Tuple Space for the underlying r d () or i n ()
operation’s template. If the let expression cannot be eval-
Eated, reduce - send adds /z back to A. Adding 2 back to
A permits future reduction attempts. Otherwise, the let
expression reduces, reduce - send adds the new closure
to A, and G, upon return, reflects the reduced let expression
(for example, a tuple might have been removed from Tuple
Space).

75

(def ine reduce-1

(cond
(lambda (closure state-LBar)

((o u t ? c losure)

((e v a l ? c losure)

((send? closure)

((r e a c t ? c losure)

(reduce-out c losure s ta te-LBar))

(reduce-eval c losure state-LBar))

(reduce-send ctosure s ta te-LBar))

(reduce-react c losure s t a t e - L B a r)))))

(def ine reduce-out
(lambda (closure state-LBar)

(l e t ((sigma (g e t f s t a t e s ta te-LBar)) (t (get-template c losu re)))

(l e t ((Abar (get-Abar sigma)) (Tbar (get-Tbar sigma))
(Pbar (get-Pbar s i g m a)))

(l e t ((newTbar (u n i o n Tbar (s ing le ton t)))
(newPl~ar (union Pbar (s ingleton

(make-event 'Ec.reated t)))))

(l i s t (make-state Abar newTbar newPbar ' ())
(get-LBar state-LBar)))))))

(de f ine reduce-eval
(lambda (closure state-LBar)

(l e t ((sigma (ge t - s t , s t e state-LBar)) (t (get-template c losu re)))

(l e t ((Abar (get-Abar sigma)) (Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(l e t ((newAbar (union Abar (s ing le ton t)))
(newPbar (union Pbar (s i n g l e ton

(l i s t (make-state newAbar Tbar newPbar ' 0)
(get-LBar s t a t e - L B a r)))))))

(make-event 'Egenerating t)))))

(de f ine reduce-react
(lambda (closure state-LBar)

(l e t ((sigma (g e t - s t a t e s ta te-LBar)) (LBar (get-LBar state-LBar)))

(l e t ((Abar (get-Abar sigma)) (Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(l e t ((f i e l d - k (g e t - f i e l d tup le - j (get-k c l o s u r e))))
(l e t ((t u p l e - j (get- tuple Ahar (g e t - j c l o s u r e))))

(l e t ((new-field-k (se t - f i e ld - type
(bind f i e ld -k (g e t - t c l o s u r e)) ' A c t i v e)))

(l e t ((new-tuple-j (add- f i e ld (remove-field
tuple- j f ie ld-k) new-f i e ld -k)))

(l e t ((newAhar (u n i o n (s e t - d i f f Abar
(s ingleton tuple- j))

(s ingleton n e w - t u p l e - j))))
(l i s t (make-state newAbar Tbar Phar ' 0)

LBar))))))))))

Fig. 6 VCRTs operational semantics. Functions: reduce - 1, reduce - out , reduce- eval, reduce - r eac t

Functions reduce - rd and reduce - in boJh take a
synchronous communication closure and a a-A pair as
arguments, and return either a tuple-state pair or a null.
Both functions attempt to find a matching tuple in Tuple
Space and if unsuccessful, return null. If a match exists,
reduce - rd returns a copy of the matching tuple, and
generates event ' Ecopied. Similarly, reduce - in
returns a copy of matching tuple t, but also removes t
from Tuple Space, while generating event ' Econsumed.

The reactivate form of a communication closure speci-
fies which field of which tuple contains a pending Linda
process that is to be reactivated. Specifically, the
reduce- react function updates tsubj [IC] to make
it an active Linda process, and fills its evaluation context
with redex t. reduce - react is applied to a closure and
a orA pair, where the closure contains j , k and t. The
o-A pair returned by reduce - react contains the
updated tuple.

16

During the second phase of a VCRTs transition, function
G chooses a random subset of active Linda processes to
make computational progress. From the perspective exter-
nal to !? - LambdaBar, these processes make computa-
tional progress in parallel. Internal to G, Linda processes
are scheduled via the genMeaning function. The
sequence does not matter since, during this intra-process
phase of tranjition, no Tuple Space interactions occur. G
returns a o-A pair representing one possible cumulative
meaning of the random subset of active Linda processes
making computational progress.

A closer look at genMeaning is in order. Within a
concurrent system, in general, it is possible for individual
processes to make simultaneous computational progress at
independent, variable rates. Thus, for VCRTs, it is incum-
bent upon genMeaning to be capable of reflecting all
possible combinations of computational progress among a
list of Linda processes in the o-A pair it returns. With the

IEE Proc.-Sofm., VoI. 150. No. 2, April 2003

help of F -mu, genMeaning satisfies this requirement.
For each Linda process, F -mu randomly chooses a mean-
ing from the set of all possible meanings that Lm could
return, i.e. each process proceeds for some random amount
of its total potential computational progress.

Function Lm is the high-level Linda meaning function
for a process $[k] in FA. Lm handles three general cases.
Either process $[k] makes computational progress invol-
ving no Linda primitives, but still has remaining compu-
tation; process t,[k] makes computational progress
involving no Linda primitives, and replaces itself with a
typed return value; or process t,[k] makes computational
progress, the last part of which is a Linda primitive. Lm
assumes the existence of helper function Lm - comp to
return all possible meanings of internal Linda process
computation (that is, up to, but not including, a Linda

primitive function). A random choice determines how
$[k] gets updated. In the case of the final active process
within $ becoming passive, Lm moves 9 from the set of
active tuples to the set of passive tuples, and generates
event I Egenerated.

In the case where $[k]’s computational progress includes
a Linda primitive, function Lm - prim finishes the work Lm
started, The two main cases of Linda primitives are
asynchronous and synchronous. In either case, Lm- prim
constructs the appropriate closure forms and adds the
closure containing the primitive request to A. In the case
of the synchronous primitive, Lm -prim also changes $[k]
from active to pending.

The careful reader may question the need for a double
choice of meanings among Lm and F -mu for a given Linda
process ~ [k] . Briefly, Lm selects a random meaning for

(define reduce-send
(lambda (closure state-LBar)

(let ((send-arg (get-send-arg closure)))
(if (delayed? send-arg)

(let ((LBarl (union (cadr state-LBar)

(list (car state-LBar) LBarl))
(singleton (strip-delay send-arg)))))

(let ((closure-state
(reduce-let (strip-force send-arg) state-LBar)))

(if (null? closure-state)
(list (car state-LBar)

(let ((LBarl (union (cadr state-LBar)
(union (cadr state-LBar) (singleton closure)))

(car closure-state) 1))
(list (cadr closure-state) LBarl))))))))

(define reduce-let
(lambda (closure state-LBar)

(let ((Lprim (get-forced closure)) (react (get-delayed closure)))
(let ((tuple-state

(if (rd? Lprim)
(reduce-rd closure state-LBar)
(reduce-in closure state-LBar))))

(if (null? tuple-state)
‘ () ;prim failed
(let ((bound-closure (bind (car tuple-state) react))

(newstate (cadr tuple-state)))

(list bound-closure newstate)))))))

(define exists?
(lambda (TBar f)

(if (null? TBar)
(’ 0)
(let ((tuple (car TBar)))

(if (f tuple)
(tuple)
(exists? (set-diff TBar (singleton tuple)) f))))))

(define reduce-rd
(lambda (closure state-LBar)

(let ((sigma (get-state state-LBar))
(template (get-template closure)))

(let ((Abar (get-Abar sigma)) (Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(let ((t (exists? Tbar f)))
(let ((f ((lambda t) (match? template t))))

(if (null? t)
(‘ 0)
(let ((newPbar (union Pbar (make-event ’Ecopied t))))

(make-state Abar Tbar newPbar ’ 0)))
(let ((newsigma

(list t newsigma))))))))))

Fig. 7

IEE Proc-Softw.., Vol. 150, No. 2, April 2003

VCRTs operational semantics. Functions: reduce - send, reduce - l e t , ex i s t s? , reduce - rd

$[IC]; F - m u constructs the set of all possible meanings that
~m could return for t,[k], only to select from this set a
random meaning for ~ [k] . Clearly, we could have structured
a single random choice, but not doing so permits us to
isolate and investigate different scheduling policies and
protocols. For each transition, the number of possible next
states is combinatorially large. Recall that Lm and F - m u
are part of the function that generates children, one of
which the transition relation chooses to elaborate, in lazy
tree 0. Each random choice the transition relation makes
prunes 'subsets of possible next states, until one remaining
state is finally elaborated. Since Lm-comp is a helper
function, the double choice of meanings emphasises the
possibilities for a single Linda process, and is, consistent
with the other random choices made during transition.

This concludes our description of the Scheme functions
associated with state transition in VCRTs. The functional

nature of Scheme gives a precise and elegant description of
the operational semantics for Linda and Tuple Space.
Equally precise and elegant is the Scheme implementation
of the VCRTs view relation. It is instructive to note that the
view relation for VCRTs is equivalent to the uninstantiated
view relation presented in Fig. 3 of Section 2.1. The
transition and view relations together allow us to reason
about all possible behaviours of a distributed system's
computation, and all possible views of each of those
behaviours. Thus we have a powerful tool for identifying
and reasoning about properties of distributed computation.

3 Composition

The decision to model Tuple Space composition in VCRTs
stemmed largely from commercial Tuple Space implemen-

(define reduce-in
(lambda (closure state-LBar)

(let ((sigma (get-state state-LBar))

(let ((Abar (get-Abar sigma))
(template (get-template closure)))

(Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(let ((f ((lambda t)
(match? template t))))

(let ((t (exists? Tbar f)))
(if (null? t)

(' 0)
(let ((newTbar (set-diff

Tbar (singleton t)))

(make-event 'Econsumed t))))

Abar newTbar newPbar ' ())))

(newPbar (union Pbar

(let ((newsigma (make-state

(list t newsigma))))))))))

(define G
(lambda (s tate-LBar)

(let ((sigma (get-state state-LBar))

(let ((Abar (yet-Abar sigma))
(LBar (get-LBar state-LBar)))

(Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(let ((Lprocs (get-active-procs Abar)))
(let ((randsub (get-rand-subset Lprocs)))

(genbleaning (as-list randsub)
(list (make-state

Abar Tbar Pbar ' ())

LBar))))))))

(define genMeaning
(lambda (Lprocs state-LBar)

state-LBar
(let ((jk-pair (car Lprocs))

(let ((j (get-j jk-pair))
(k (get-k j k - p a i r))
(Abz.r (get-Abar sigma)))

(genMeaning (cdr Lprocs)

(if (null? Lprocs)

(sigma (get-state state-LElar)))

(let ((tsubj (get-tuple j Abar)))

(F-mu tsubj k state--LBar))))))) I

(define F-mu
(lambda (tsubj k st.ate-LBar)

(let ((meanings-of-tsubj-k (gen-set Lm tsubj k state-LBar)))
(car (as-list meanings-of-tsubj-k)))))

Fig. 8 VCRTs operational semantics. Functions: reduce - in, G, genMeaning, F -mu

78 IEE Proc.-Sojii., Vol. 150, No. 2, April 2003

define Lm
(lambda (tsubj k state-LBar)
(let ((sigma (get-state state-LBar))

(let ((Abar (get-Abar sigma))
(LBar (get-LBar state-LBar)))

(Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(let ((tsubjl (tupleupdate tsubj k
(composition rand Lm-comp))))

(if (exists-active-field? tsubjl)
(let ((Abarl (union

(set-diff Abar (singleton tsubj))
(singleton tsubjl))))

(process-redex tsubjl k
Abarl Tbar Pbar LBar))

(singleton tsubj)))

(singleton tsubjl)))

(singleton (make-event

(let ((Abarl (set-diff Abar

(Tbarl (union Tbar

(Pbarl (union Pbar

'Egenerated tsubjl)))))

Abarl Tbarl Pbarl LBar))))))))
(process-redex tsubjl k

(define process-redex
(lambda (tsubj k Abar Tbar Pbar LBar)

(let ((redex (get-redex tsubj k)))
(if (linda-prim? redex)

(Lm-prim tsubj k
(list (make-state Abar Tbar Pbar ' 0)

LBar))

LBar)))))

(list (make-state Abar Tbar Pbar ' 0)

Fig. 9 VCRTs operational semantics. Functions: Lm, process - redex

tations that are based on multiple Tuple Spaces. The
decision to express the operational semantics of VCRTs
in Scheme was motivated by a desire to gain a stronger
intuition into how VCRrs could be implemented. Also,
operational semantics permits the choice of level of
abstraction, which includes the expression of the semantics
itself. An additional benefit of using Scheme was the
language's support for closures.

The semantics of Linda primitives with explicit Tuple
Space handles led to wrapping the primitive expressions in
closures, along with their corresponding handles. Each
closure explicated the routing requirements for a Linda
primitive based on the primitive's Tuple Space handle and
the handle of the Tuple Space from which the primitive was
issued. Since VCR is a model for concurrency, we needed an
abstraction to support the evaluation of multiple simulta-
neous Linda primitives or, in general, multiple simultaneous
communications. This need evolved into the introduction of
VCR's set of message closures, 4.

By evolving the definition of S from that of a tciple to a
grammar, two things are accomplished. -First, S, itself,
becomes a parameter of VCR! Second, S represents not
just the model of an individual concurrent system we
wish to reason about but, rather, the model for an infinite
variety of composed systems. Depending on the particular
composition argument used for parameter S, different
composition relationships are possible. For example,
consider the_ gramm_ar partially specified by production
rule S+ (S*o, A, Y). One possible derivation is shown
in Fig. 10. Each nonterminal S is labelled with unique
numeric subscripts corresponding to the tuples they derive.
The order of derivation is according to the subscripts of the

IEE Proc -Softw, Vol 150, No 2, April 2003

nonterminals. The final string of Fig. 10 corresponds to the
composition tree of Fig. 11.

The grammar produces two kinds of nodes: leaf nodes
and coniposition (interior) ?odes. Leaf nodes look like the
old definition o_f S, (a, AL Y); composition nodes are
instances of (St 0, A, Y). Technically, composition
nodes contain their children nodes. By extension, the
root node r of a composition tree contains the entire tree
rooted by r. Thus, representation of r as a tree is really an
expansion of root node r, whose origin is one possible
string generated by our grammar.

Fig. 11 Example composition tree from derivation of s
79

(define L m - p r i m
(lambda (t s u b j k state-LBar)

(l e t ((sigma (g e t - s t a t e state-LBar)) (LBar (get-LBar state-LBar)))

(l e t ((Abar (get-Abar sigma)) (Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)) (redex (get-redex t s u b j k)))

(l e t ((handle (qet-handle redex))
(Iprim (get-Linda-prim redex))
(template (get-template r e d e x)))

(i f (asynch-prim? lprim)
;asynchronous pr imi t ive
(l e t ((lambda3 (l i s t lprim template)))

(l e t ((lambda2 (l i s t ' for 'ze lambda3)))
(l e t ((lambda1 (l i s t ('send handle

(l i s t 'de lay l a m b d a 2)))))
(l e t ((LBarl (union LBar

(s ing le ton lambdal)))

t s u b j k reduce-asynch)))
(t s u b j l (tupleupdate

(l e t ((Abar l (union
(s e t - d i f f Abar
(s ing le ton t s u b j))
(s ing le ton t s u b j l))))

(l i s t (make-state

L B a r l))))))
Abarl Tbar Pbar ' ())

;synchron3us pr imi t ive
(l e t ((lanbda4 (l i s t lprim template)))

(l e t ((lambda3 (l i s t ' l e t t
(l i s t ' f o r c e lambda4)
' i n (l i s t 'de lay (l i s t

' r e a c t t subj k t)))))
(l e t ((lambda2 (l i s t 'send

(get-self-handle state-LBar)
(l i s t ' f o r c e lambda3))))

(l e t ((lambdal (l i s t 'send handle
(l i s t 'de lay lambda2))))

(s ing le ton lambdal)))
(l e t ((LBarl (union LBar

(t s u b j 1 (tupleupdate
t subj k
make-pending)))

(l e t ((Abar l (union (s e t - d i f f
Abar (s ing le ton t s u b j))

(s ing le ton t s u b j l))))

(l i s t (make-s t a t e
Abarl T b a r Pbar ' 0)

L B a r l)))))))))))))

Fig. 12 VCRTs operational semantics. Function: Lm- p r i m

Trees are a meaningful absQaction for reasoning about
compositiop. Consider a node SI within a composition tree.
Node that S, is a tuple cqntaining a computaticn space CJ, a
set _Of message closures A, and a set of views Y. The scope
of A and 7 is the subtree with root node SI. ?ow coqsider
a composition tree in its entirety. Since CJ, A and Y are
parameters, VCR can model composition of heterogeneous
distributed systems. That is, different leaves of the compo-
sition tree may represent different instances of a c!ncurrect
system, as specified by their respective CJ, A and Y
parameter values.

One of the advantages of event-based reasoning is the
ability-through parameterisation-to define common
events across heterogeneous systems. Within each leaf
node, multiple simultaneous views of its respective local
computation are possible, just as is possible i n VCR
without composition. Taking the leaf nodes as an aggre-
gate, though, composition in VCR now supports a natural
partitioning of parallel event traces and their respective
views. There is not necessarily a temporal relationship
between corresponding elements of the computational

80

traces of a composition tree's leaf nodes. Such temporal
relationships must be reasoned about using a common
composition node.

Finally, consider the composition nodes. A composition
node, like a leaf node, represents the possibility for
multiple simultaneous views of its own local computation.
Further, since the scope of a composition node c
represents that of the entire subtree rooted at c, a subset
of events present in c's parallel event trace, and
corresponding views, may represent some subset of the
aggregate events found in the subtrees of c's children.
The extent to which events from the subtrees of node
c's children occur in c is itself a parameter. For example,
one may wish to compose two or more systems according
to certain security policies. Alternatively, or additionally,
one may wish to compose systems in a way that allows
for relevance filtering to promote greater scalability.
In both of these examples, the ability to limit event
occurren.ce in composition nodes through parameterisation
supports modelling composition at a desirable level
of abstraction.

IEE Pruc.-Si~h~., Vi/. 150, No. 2, April 2003

To specify Tuple Space composition in VCRTs requirgs
adding one -further production rule to grammar S:
n+ (A, 7, P, (T). Tuple Space composition also requires
a change to reduce-send, the part _Of the transition
relation that reduces message closures in A. Further details
of Tuple Space composition for VCRTs, and for VCR in
general, are beyond the scope of this paper, but can be found
in Smith [l].

4 Demonstration of reasoning with VCR

To demonstrate the utility of reasoning with parallel events
and views, we present a case study of two primitive
operations that were removed from an early definition of
Linda. Section 4.1 introduces the two Linda predicate
operations involved in the case study. The remainder of
the section is the demonstration.

4.7 Ambiguous Linda predicate operations
In addition to the four primitives rd () , in () , out ()
and eval () , the Linda definition once included predicate
versions of rd () and in () . Unlike the rd () and in ()
primitives, predicate operations rdp () and inp () were
nonblocking primitives. The goal was to provide tuple
matching capabilities without the possibility of blocking.
The Linda predicate operations seemed like a useful idea,
but their meaning proved to be semantically ambiguous,
and they were subsequently removed from the formal
Linda definition.

First, we demonstrate the ambiguity of the Linda predi-
cate operations when our means of reasoning is restricted
to an interleaved sequential event trace semantics like that
provided by CSP. The ambiguity is subtle and, in general,
not well understood. Next, we demonstrate how reasoning
about the same computation with an appropriate instance
of VCR disambiguates the meaning of the Linda predicate
operations.

Predicate operations rdp () and inp () attempt
to match tuples for copy or removal from Tuple Space.
A successful operation returns the value one (1) and the
matched tuple in the form of a template. A failure, rather
than blocking, returns the value zero (0) with no changes to
the template. When a match is successful, no ambiguity
exists. It is not clear, however, what it means when a
predicate operation returns a zero.

The ambiguity of the Linda predicate operations is a
consequence of modelling concurrency through an arbi-
trary interleaving of Tuple Space interactions. Jensen
noted that when a predicate operation returns zero,
‘only if every existing process is captured in an interac-
tion point does the operation make sense’ [7]. Suppose
three Linda processes, p I , p2 and p 3 , are executing
concurrently in Tuple Space. Further suppose that each
of these processes simultaneously issues a Linda primi-
tive as depicted in Fig. 13.

Assume no tuples in Tuple Space exist that match
template t’, except for the tuple t being placed in Tuple
Space by process p 3 . Together, processes pI , p 2 and p 3
constitute an interaction point, as referred to by Jensen.
There are several examples of ambiguity, but discussing
one possibility will suffice. First consider that events are
instantaneous, even though time is continuous. The
outcome of the predicate operations is nondeterministic;
either or both of the rdp (t’) and inp (t’) primitives
may succeed or fail as they occur instantaneously with the
out (t) primitive.

IEE Proc.-Sof&J., kl. 130, No. 2, April 2003

tuple space

t: j

Fig. 13
point in Tuple Space involving three processes

Case study for Lindapredicate ambiguity: an interaction

For this case study, let the observable events be the
Linda primitive operations themselves (Le. the communi-
cations). For example, out (t) is itself an event, repre-
senting a tuple placed in Tuple Space. The predicate
operations require additional decoration to convey
success or failure. Let bar notation denote failure for a
predicate operation. For example, inp (t’) represents the
event of a successful predicate, returning value 1, in
addition to the tuple successfully matched and removed
from Tuple Space; rdp (t7 represents the event of a
failed predicate, returning value 0.

The events of this interaction point occur in parallel, and
an idealised observer keeping a trace of these events must
record them in some arbitrary order. Assuming perfect
observation, there are six possible correct orderings.
Reasoning about the computation from any one of these
traces, what can we say about the state of the system after
a predicate operation fails? The unfortunate answer is
‘nothing’. More specifically, upon failure of a predicate
operation, does a tuple exist in Tuple Space that matches
the predicate operation’s template? The answer is that it
may or it may not.

This case study involves two distinct levels of nondeter-
minism, one dependent upon the other. Since what happens
is nondeterministic, then the representation of what
happened is nondeterministic. The first level concerns
computational history; the second level concems the arbi-
trary interleaving of events. Once we fix the outcome of the
first level of nondeterminism, that is, determine the events
that actually occurred we may proceed to choose one
possible interleaving of those events for the idealised obser-
ver to record in the event trace. The choice of interleaving is
the second level of nondeterminism.

Suppose that, in the interaction point of our case study,
process p I and p2’s predicate operations fail. In this case,
the six possible orderings an idealised observer can record
are the following:

1. rdp(t’) +inp(t’)+out(t)
2. rdp(t‘) +out(t) +inp(t’)
3. inp(t’) +rdp(t’) +out(t)
4. inp(t‘) +out(t) -trdp(t‘)
5 . out(t) +rdp(t’) -+inp(t’)
6. out(t) +inp(t’) +rdp(t’)

The idealised observer may choose to record any one of
the six possible interleavings in the trace. All but the first
and the third interleavings make no sense when reasoning
about the trace of computation. Depending on the context
of the trace, the first and third interleavings could also lead
to ambiguous meanings of failed predicate operations. In
cases 2, 4, 5 and 6, an out (t) operation occurs just
before one or both predicate operations, yet the events
corresponding to the outcome of those predicates indicate
failure. It is natural to ask the question: ‘This predicate
just failed, but is there a tuple in Tuple Space that matches

81

the predicate’s template?’ According to these interleav-
ings, a matching tuple t existed in Tuple Space; the
predicates should not have failed according to the defini-
tion of a failed predicate operation. The meaning of a
failed predicate operation breaks down in the presence of
concurrency expressed as an arbitrary inteqleaving of
atomic events. This breakdown in meaning is I due to the
restriction of representing the history of a computation as
a total ordering of atomic events. More specifically, within
the context of a sequential event trace, one cannot distin-
guish the intermediate points between concurrent inter-
leavings from those of events recorded sequentially.
Reasoning about computation with a sequential event
trace leads to ambiguity for failed Linda predicate opera-
tions rdp (t’) and i n p (t’) .

4.2 Clarity
Recording a parallel event sequentially does not preserve
information regarding event simultaneity. With no seman-
tic information about event simultaneity, the meaning of a
failed predicate operation is ambiguous. The transforma-
tion from a parallel event to a total ordering of that
parallel event is one-way. Given an interleaved trace-
that is, a total ordering of events, some of which may have
occurred simultaneously-we cannot in general recover
the concurrent events from which that interleaved trace
was generated.

A fundamental principle, that of entropy, underlies the
problem of representing the concurrency of rnultiple
processes by interleaving their respective traces of compu-
tation. The principle of entropy provides a measure of the
lack of order in a system or, alternatively, a measure of
disorder in a system. The system, for our purposes, refers
to models of computation. There is an inverse relationship
between the level of order represented by a model’s
computation, and its level of entropy. When a model’s
computation has the property of being in a state of order,
it has low entropy. Conversely, when a model’s computa-
tion has the property of being in a state of maximum
disorder, it has high entropy. We state the loss of entropy
property for interleaved traces.

Property (Loss of Entropy): Given a concurrent computa-
tion c, let trace tr be an arbitrary interleaving of atomic
events from c, and let el and e2 be two events within tr,
such that el precedes e2. A loss of entropy du.e to tr
precludes identifying whether e l and e2 occurred Isequen-
tially or concurrently in c.

By interleaving concurrent events to form a sequential
event trace we lose concurrency information about its
computation. Interleaving results in a total ordering of
the events of a concurrent computation, an overspecifica-
tion of the order in which events actually occurred.
Concurrent models of computation that proceed in this
fashion accept an inherent loss of entropy. A loss of

entropy is not always a bad thing; CSP has certainly
demonstrated its utility for reasoning about concurrency
for a long time. But loss of entropy does limit reasoning
about certain computational properties, and leads to
problems such as the ambiguity of the Linda predicate
operations in our case study.

The relationship between the trace of a computation and
the multiple views of that computation’s history reflects the
approach of VCR to model multiple possible losses of
entropy (Le. views) from a single high level of entropy (i.e.
parallel event trace). Furthermore, VCR views differ from
CSP trace interleavings in two important ways. First, VCR
distinguishes a computation’s history from its views, and
directly supports reasoning about multiple views of the
same computation. Second, addressing the issue from the
loss of entropy property, a view is a list of ROPES, not a list
of interleaved atomic events. The observer corresponding
to a view of computation understands implicitly that an
event within a ROPE occurred concurrently with the other
events of that ROPE (within the bounds of the time
granularity), after any events in a preceding ROPE, and
before any events in a successive ROPE.

The parallel events feature of VCR makes it possible to
reason about predicate tuple copy and removal operations
found in commercial Tuple Space systems. A parallel
event is capable of capturing the corresponding events of
every process involved in an interaction point in Tuple
Space. This capability disambiguates the meaning of a
failed predicate operation, which makes it possible to
reintroduce predicate operations to the Linda definition
without recreating the semantic conflicts that led to their
removal.

Consider, once again, the six possible interleavings a
perfect observer might record for the interaction point in
Tuple Space shown in Fig. 13, but this time, as recorded by
six concurrent (and in this case, perfect) observers, as
shown in Fig. 14. The additional structure within a view of
computation, compared to that of an interleaved trace,
permits an unambiguous answer to the question raised
earlier in this section: ‘This predicate just failed, but is
there a tuple in Tuple Space that matches the predicate’s
template?’ By considering all the events within the ROPE
of the failed predicate operation, we can answer yes or no,
without ambiguity or apparent contradiction. In our case
study from Fig. 13, given both predicate operations nonde-
terministically failed within a ROPE containing the
out (t) and no other events, we know that tuple t
exists in Tuple Space. The transition to the next state
does not occur between events; it occurs from one parallel
event to the next. For this purpose, the order of events
within a ROPE does not matter; it is the scope of concur-
rency that is important.

4.3 Importance
Our case study of the Linda predicate operations is impor-
tant for several reasons. First, we demonstrated the power

1. . . . [p r e v i o u s ROPEl--r[riJp(t’)~inp(t’)~out(t)]+ [nex t R O P E] . . .
2. . . . [p r e v i o u s ROPE] - + F z + o u t (t) + Z m] + [next ROPE] . . .
3 [p r e v i o u s ROPE]-+[;;?p(t‘)+rdp(t’)+out(t)]+[next R O P E] . . .
4. . . . [p r e v i o u s ROPE]-+Flp(t’)+out(t)+rdp(t’)]+ [next R O P E] . . .
5. . . . [p r e v i o u s ROPE]-+[o.~t(t)+rdp(t’)+inp(t’)]+[next ROPE]. . .
6. . . . [p r e v i o u s ROPE]--,[o.it(t)+inp(t’)+rdp(t’[next ROPE]. . .

~~

--
~ --

Fig. 14

82

Six viavs (lists of ROPES) of the same interaciion point in Tuple Space

IEE Proc.-Sofm., Vol. 150, No. 2, April 2003

and utility of view-centric reasoning. Second, we provided
a framework that disambiguates the meaning of the Linda
predicate operations rdp 0 and i np 0, making a case
for their reintroduction into the Linda definition. Third,
despite the removal of predicate operations from the formal
Linda definition, several Tuple Space implementations,
including Sun’s JavaSpaces [8] and IBM’s T Spaces [9],
provide predicate tuple matching primitives. VCR
improves the ability to reason formally about these
commercial Tuple Space implementations by providing
a framework capable of modelling the Linda predicate
operations.

5 Conclusions

In Section 2, we introduced view-centric reasoning (VCR),
a new framework for reasoning about properties of concur-
rent computation. VCR extends CSP with multiple,
imperfect observers and their respective views of the
same computation. VCR is a general framework, capable
of instantiation for different parallel and distributed
paradigms. This paper presents one example of VCR
instantiation, for the Linda coordination language and
Tuple Space. Section 3 followed with a brief discussion
of composition within the VCR framework in general, and
for Linda and Tuple Space computation in particular.

In Section 4, we pointed out the difficulties associated
with reasoning directly about event simultaneity using
interleaved traces, an approach supported by CSP. In
particular, we identified the loss of entropy property. We
then characterised VCR’s entropy-preserving abstractions
of parallel events and ROPES. VCR is a new framework for
reasoning about properties of concurrency. We demon-
strated the usefulness of VCR by disambiguating the
meaning of Linda predicate operations. Finally, we pointed
out how the relevance of Linda predicate operations,
variations of which exist in commercial Tuple Space
implementations by Sun and IBM, compels us to create
new instantiations of VCR to reason about safety and
liveness properties of such systems. Future work on such

instantiations will also require further investigation into
Tuple Space composition.

6 Acknowledgments

The authors wish to thank all the referees who reviewed
this paper. We are especially grateful to the anonymous
referee who reviewed the longer version of this manuscript,
and provided us with valuable corrections, insights and
future directions. In particular, an alternative expression of
VCR in the alphabetised relational calculus would facili-
tate drawing VCR into Hoare and He’s Unifying Theories
of Programming [lo], and provide for a more formal
comparison between VCR and CSP.

7

1

2

3

4

5

6

I

8

9

10

References

SMITH, M.L.: ‘View-centric reasoning about parallel and distributed
computation. PhD thesis, University of Central Florida, Orlando, FL
32816-2362, December 2000
SMITH, M.L., PARSONS, R.J., and HUGHES, C.E.: ‘View-centric
reasoning for Linda and Tuple Space computation’ in PASCOE, J.S.,
WELCH, P.H., LOADER, R.J., and SUNDERAM, VS. (Eds.): ‘Commu-
nicating process architectures 2002’, Concurrent Systems Engineering
Series, Amsterdam, 2002, Vol. 60 (10s Press), pp. 223-254
GELERNTER, D.: ‘Generative communication in Linda’, ACM Trans.
Program. Lung. Sy.yt., 1985, 7, (l), pp. 80-112
HOARE, C.: ‘Communicating sequential processes’ (Prentice Hall
International Series in Computer Science, Prentice-Hall International,
London UK, Ltd., UK, 1985)
ROSCOE, A.W.: ‘The theow and practice of concurrency’ (Prentice Hall
International Series in Computer Science, Prentice Hall Europe, London,
1998)
SCHNEIDER, S.: ‘Concurrent and real-time systems: The CSP
approach’ (Worldwide Series in Computer Science, John Wiley &
Sons, Ltd., West Sussex, UK, 2000)
JENSEN, K.K.: ‘Towards a multiple Tuple Space model’. PhD thesis,
Aalborg University, Nov. 1 994. http://www.cs.auc.dklresearch/FSi
teachinglPhDimts.abstract.htm1, accessed 23 February 2003
FREEMAN, E., HUPFER, S., and ARNOLD, K.: ‘JavaSpaces: princi-
ples, patterns, and practice’ (The Jini Technology Series, Addison
Wesley, Boston, MA, 1999)
WYCKOFF, P., MCLALJGHRY, S.W., LEHMAN, T.J., and FORD, D.A.:
‘T Spaces’, IBMSyst. J T , 1998, 97, (3), pp. 454414
HOARE, C., and JIFENG, H.: ‘Unifying theories of programming’
(Prentice Hall, London, 1998)

IEE Proc.-Sofi., El. 150, No. 2, April 2003 83

http://www.cs.auc.dklresearch/FSi

