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Abstract: In contrast to sequential computation, concurrent computation gives rise to parallel 
events. Efforts to translate the history of concurrent computations into sequential event traces 
result in the potential uncertainty of the observed order of these events. Loosely coupled 
distributed systems complicate this uncertainty even further by introducing the element of 
multiple imperfect observers of these parallel events. Properties of such systems are difficult to 
reason about and, in some cases, attempts to prove safety or liveness lead to ambiguities. The 
authors present a survey of challenges of reasoning about properties of concurrent systems. They 
then propose a new approach, view-centric reasoning, that avoids the problem of translating 
concurrency into a sequential representation. Finally, they demonstrate the usefulness of view- 
centric reasoning as a framework for disambiguating the meaning of Tuple Space predicate 
operations, versions of which exist commercially in IBM’s T Spaces and Sun’s JavaSpaces. 

1 Introduction 

‘The greatest problem with communication is the illusion it 
has been accomplished’-George Bernard Shaw 

Commonly employed models of concurrent systems fail to 
support reasoning that accounts for multiple inconsistent 
and imperfect observers of a system’s behaviour. We 
overcome these limitations with a new framework, called 
view-centric reasoning (VCR) [ 1, 21, that addresses issues 
arising from inconsistent and imperfect observation. This 
paper assumes a familiarity with the Linda and Tuple 
Space communication and co-ordination paradigm, due 
to Gelernter [3]; and the communicating sequential 
processes (CSP) model of concurrency, due originally to 
Hoare [4], with more recent contributions by Roscoe [5] 
and Schneider [6]. 

The nondeterminism of multiple communicating 
distributed processes leads to a potentially intractable 
combinatorial explosion of possible behaviours. By 
considering the sources of nondeterminism in a distributed 
system, the policies and protocols that govern choice, and 
the possible traces and views that result, one can utilise the 
VCR framework to reason about the behaviour of instances 
of extremely diverse distributed computational models. 

VCR is a new model of computation that extends the 
CSP metaphor of an event trace. VCR uses a convergence 
of tools and techniques for modelling different forms of 
concurrency. It is designed to improve upon existing levels 
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of abstraction for reasoning about properties of concurrent 
computation. The result is a model of computation with 
new and usefiil abstractions for describing concurrency and 
reasoning about properties of such systems. 

In concurrent systems, especially distributed systems, it 
is possible for more than one observer to exist. Further- 
more, it is possible for different observers to perceive 
computational event sequences differently, or for some 
observers to miss one or more event occurrences. Reasons 
for imperfect observation range! from network unreliability 
to relevance filtering in consideration of scalability. VCR 
extends CSP’s notion of a single, idealised observer with 
multiple, possibly imperfect, observers, and the concept of 
views. A view of computation implicitly represents its 
corresponding observer; explicitly, a view is one observer’s 
perspective of a computation’s history, a partial ordering of 
observable events. Multiple observers, and their corre- 
sponding views, provide relevant information about a 
computation’s concurrency, and the many partial orderings 
that are possible. 

VCR models concurrency using a parameterised opera- 
tional semantics. The reasons for choosing operational 
semantics to develop VCR are twofold. First, an opera- 
tional semantics describes how computation proceeds. 
Second, an operational semantics permits choosing an 
appropriate level of abstraction, including the possibility 
for defining a parameterised model. The motivation for 
including parameters is to make VCR a general model that 
can be instantiated. Each such instance can be used to 
study and reason about the properties of some specific 
parallel or distributed system within a consistent frame- 
work. The focus of this paper is on an instance of VCR for 
Linda and Tuple Space computation. 

2 View-centric reasoning 

This section presents the VCR framework in two parts. 
Section 2.1 introduces the uninstantiated VCR model. 
Section 2.2 presents VCR instantiated for Linda and 
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Table 1: VCR notation 

Notation Meaning 

S A concurrent system 
s Model of S 
CT, 0, 

A Set of communication closures 
i, A communication closure 
i- Set of views 
V A view 
P A ROPE 

, 

Computation space (lazy tree) of S, or a 
decorated state within tree 0 

a trace: one another a third 
possible view: possible view: possible view: 

h 1 i )  

Fig. 2 VCR concepts: parallel events, ROPEs, trace and views 

Tuple Space. The actual operational semantics described in 
Section 2.2.2 can be found in the Appendix (Section 8). 
The topic of composition arises in this section, but is 
otherwise deferred until Section 3. 

2.7 VCR uninstantiated 
This section presents the uninstantiated VCR model, S. 
The notation and definitions provided lay the foundation 
for further formal discussion in this-section’s remaining 
subsections. The components for S are described in 
Table 1. The_ bar notation is used to denote elements in 
the model S which correspond to elements in some 
concurrent system S. 

In the abse_nce_ of composition, S is represented by the 
3-tuple ((T, b, Y), where cr represents the computation 
space of S, A represents the set of communication closures 
within c, and Y represents the set of views of the 
computation within cr. The remainder of this section 
discusses in greater detail the concepts embedded 
within S. In turn, we cover computation spaces, commu- 
nication closures, observable events, traces and views. 

The state cr is a lazy tree of state nodes, as depictedjn 
Fig. 1. When we refer to the tree cr, we refer to S’s 
computation space. Each node in the tree represents a 
potential computational state. Branches in the tree repre- 
sent state transitions. The root node cr is S’s start state, 
which corresponds to a program’s initial configuration in 
the system being modelled by S. State nodes carry 
additional information to support the operational seman- 
tics. The specific elements of cr vary from instance to 
instance of VCR. 

Each level of tree cr represents a computational step. 
ComputaLion proceeds from one state to the next in c 
through S’s transition relation. Given a current state, the 
transition relation randomly chooses a next state from 

Fig. 1 

12 

VCR computation space: a lazy tree 

among all possible next states. At each transition, the 
chosen next state in 0 is elaborated, and thus computation 
proceeds. The logic of the transition relation may vary, but 
must reflect the computational capabilities of the system 
being modelled by S. 

To niodel the variety of approaches to parallel and 
distributed computation, VCR needs to parameteLise 
communication. The set of communication closures A 1s 
the realisation of this parameter, where the elements of A, 
the individual closure forms, A, vary from instance to 
instance of VCR. 

The ’VCR concepts of parallel events, ROPEs, a compu- 
tation’s trace, and its corresponding views are depicted- 
using shape primitives for events-in Fig. 2. Because VCR 
supports imperfect observation, the ROPE corresponding 
to a parallel event multiset need not contain all-or even 
any-events from that multiset. Indeed, imperfect observa- 
tion implies some events may be missing from a view of 
computation. 

Next, we build up these VCR concepts formally, begin- 
ning with CSP’s notion of observable events. We define an 
observable event formally as follows: 

Definition I (observable event): An observable event is an 
instance of input/output (including message passing:) 
behaviour. 

In our research, we further distinguish sequential events 
from parallel events, and define them formally as follows: 

Definition 2 (sequential event): A sequential event is the 
occurrence of an individual, observable event. 

De$nition 3 (parallel event): A parallel event is the 
simultaneous occurrence of multiple sequential events, 
represented as a set of sequential events. 

We borrow the notion of a trace from Hoare’s CSP [4], 
with one significant refinement for distributed systems: it is 
possible for two or more observable events to occur 
simultaneously. The history of a program’s computation 
within S is manifested by a stream whose input is the 
computation space 0 and whose output is a parallel event 
trace. We define sequential and parallel event traces as 
follows: 

DeJnition 4 (sequential event trace): A sequential event 
trace is an ordered list of sequential events representing the 
sequential system’s computational history. 

Definition 5 (parallel event trace): A parallel event trace is 
an ordered list of parallel events representing the parallel 
system’s computational history. 

One additional concept proves to be useful for the 
definition of views. We introduce the notion of a randomly 
ordered parallel event, or ROPE, as a linearisation of 
events in a parallel event, and define ROPE formally as 
follows: 
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Dejnition 6 (ROPE): A randomly ordered parallel event, or 
ROPE, is a randomly ordered list of sequential events 
which together comprise a subset of a parallel event. 

VCR explicitly represents the multiple, potentially 
distinct, views of computation within S. The notion of a 
view in VCR is separate from the notion of a trace. Aview of 
sequential computation is equivalent to a sequential event 
trace, and is therefore not distinguished. We define the 
notion of aview ofparallel computation formally as follows: 

De3nition 7 (view): Aview, v, of a parallel event trace, tr, is 
a list of ROPEs, where each ROPE, p ,  in v is derived from 
p’s corresponding parallel event in a tr. 

Parallel events, ROPEs, and the distinction of a computa- 
tion’s history from its views are abstractions that permit 
reasoning about computational histories that cannot, in 
general, be represented by sequential interleavings. To see 
this, assume perfect observation, and assume that different 
instances of the same event are indistinguishable. Given these 
two assumptions, it is not possible to reconstruct the parallel 
event trace of a computation, even if one is given all possible 
sequential interleavings of that computation. Thus, while it is 
easy to generate all possible views from a parallel event 
trace, the reverse mapping is not, in general, possible. For 
example, consider the sequential interleaving (A, A ,  A,  A ) ,  
and assume this trace represents all possible interleavings of 
some system’s computational history. It is not possible to 
determine from this trace alone whether the parallel event 
trace ofthe same computation is ( { A ,  A, A } ,  { A } )  or ( { A , A } ,  
{ A ,  A } ) ,  or some other possible parallel event trace. 

There are several implications of the definition of ROPE, 
related to the concept of views, that need to be discussed. 
First, a subset of a parallel events can be empty, a non- 
empty proper subset of the parallel event, or the entire 
set of sequential events that represent the parallel event. 
The notion of subset represents the possibility that one or 
more sequential events within a parallel event may not be 
observed. Explanations for this phenomenon range from 
imperfect observers to unreliability in the transport layer of 
the network. Imperfect observers in this context are not 
necessarily the result of negligence, and are sometimes 
intentional. Relevance filtering, a necessity for scalability 
in many distributed applications, is one example of imper- 
fect observation. 

F,,: view x stute+view 

F“(0. a) = 

if v empty 
V ( 0 )  

else 

uppend((heud( u))  , FF,(/uil( u) , ne-x/.s/ute(cT))) 

V ;  stlrte- view 
V(u)  = 

0 

let viewset c getP(a) 
in let p = list(viewSet) 
in random choice of 

if undefined 

else 

ap,uend((p), V(nex/stu/e(u)), or 

Fig. 3 VCR view functions 

IEE Proc.-SoftM!, Vol. 150, No. 2, April 2003 

The second implication of the definition of ROPE 
concerns the random ordering of sequential events. A 
ROPE can be considered to be a sequentialised instance 
of a parallel event. That is, if an observer witnesses the 
occurrence of a parallel event, and is asked to record what 
he saw, the result would be a list in some random order: 
one sequentialised instance of a parallel event. Additional 
observers may record the same parallel event differently, 
and thus ROPEs represent the many possible sequentia- 
lised instanc_es of a parallel event. 

Element Y of S is a set of views. Each v in P is a list of 
ROPES that represents a possible view ofcomputation. Let 
v, be a particular view of computation in Y. The jth element 
of vl, denoted p,,  is a list of sequential events whose order 
represents observer v,’s own view of computation. Element 
p, ofv ,  corresponds to the jth element of S’s trace, or the 
jth parallel event.-Any ordering of any subset of the j th  
parallel event of S’s trace constitutes a ROPE, or valid 
view, of the jth parallel event. 

We express the view relation with two functions as 
shown in Fig. 3. Instances of the view relation differ 
only by the definitions of their respective states cr. The 
view relation 3, traverses its input view v and tree o, until 
an unelaborated ROPE is encountered in v. Next, 3, calls 
relation V to continue traversing cr, for some random 
number of transitions limited so as not to overtake the 
current state of computation. While V continues to traverse 
cr, it also constructs a subsequent view v’ to return to Fv. 
For each state traversed, the corresponding pz in v’ is a 
random linearisation of a random subset of P. Upon return, 
3, appends v’ to the end of v, thus constructing the new 
view 

2.2 VCR for Linda, Tuple Space 
This section presents VCR’s operational semantics instan- 
tiated for Linda and Tuple Space (VCR”). We describe the 
operational semantics for Linda using the programming 
language Scheme. For an equivalence proof between our 
semantics and the TSspec operational semantics by Jensen 
[7], see Smith [I]. Sections 2.2.1 and 2.2.2 present the 
definitions, notation and operational semantics of VCRTs. 

2.2.1 Definitions and notation: Let denote Tuple 
Space S’s corresponding VCRTS representgtion. It remains 
to define the stpcture of states r~ within S, the transition 
relation 30 of S,  and what constitutes an observable event 
in S. We begin our discussion with the s_truc_ture_ of r ~ .  A 
state cr-is represented by the 4-tuple (A, I, P, crnext), 
where A represents the multiset of active-tuples, 7 repre- 
sents the multiset of passive tuples, P represents the 
parallel event multiset, and cne,yl is either undefined, or 
the state to which computation proceeds, as assigned by the 
transition function relation. 

We introduce a mechanism to refer to specific tuples in a 
multiset of a state. To access members-of the i_th state’s 
multiset of active tuples, consider oi= {Ai, ‘Ti, Pi, cri+,).  
Elements- of d,. can be ordered 1, 2, .  . ., Idi/; let t , ,  
t 2 ,  . . . , tlAil represent the corrgsponding tuples. The 
fields of a tuple $, for 1 sj< IAil, can be projected as 
!,[k], for 1 < k i  191. See Fig. 4 for the domain specification 
of states, tuples and fields. 

VCRTs classifies the type of a tuple field as active, 
pending or passive. An active field is one that contains a 
Linda process making computational progress. A pending 
field contains a Linda process executing a synchronous 
primitive, but still waiting for a match. A passive field 
is one whose final value is already computed. Tuple t is 
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var 
S 
sigma (0) 

&Bar (A) 
Y 
statellbar, (0, A) 
ABar (A), TBar (7) 
PBar (P) 
LProcs 
t, tsubj, template 

field. t ype 
field.con t en t s 

closure, lambda, 3, 

upsilon, u 
rho, P 

Domain 
system 
state 

closureset 
viewset 
SCSPair 
tupleset 
parEventSet 
LprocSet 
tuple 
field 
seqEvent 
etype 
fieldtype 
data 
beh 
Base 
Formal 
closure 
asynch Cl 

synchCl 

sendCl 

matchel 

reactCl 
asynchLPrim 
synchLPrim 
view 
ROPE 

Fig. 4 VCRTs domain specification 

Domain specification 
state x closureset x viewset 
tupleset x tupleset x parEventSet x state 
I undefined 

~ ( C / O . ~ U “ )  

p(v1evv) 

state x closureset 
S(W4 
s(arqi7vent) 

t ( i n d  xinr) 

list( field) 
jjeldwpe x data 
etype x tuple 
(’Ecreated, ‘Ecopied, ’Econsumed, ’Egenerating, ’Egenerated} 
{ ‘Active, ’ Pending, ’ Passive} 
beh u Base u Formal 
continuation (unspecified) 
base types (unspecified) 
?Base 
qsynchC1 (J synchCl u sendC1 u matchel u reactel u asynchLPrim 
{“send(handle, delay(1ambda) ) ”  I 
handle denotes tuple space A 
lambda E asynchlPrim} 

handle denotes tuple space A 
lambda E sendel} 

sldf denotes tuple space A 
lambda E matchCl} 

(“(let t = force(1ambda) 

lambda E synchLPrim p, 
lambda2 E reactC1) 

{‘‘send (handle, delay (lambda) ) ” I 

{“send (self, force (lambda) ) ” I 

in delay (lambda2 1 ) ” I 

{“react ( j  , k, t) ” }  
{eval (template) ,out (template) } 
{rd (template) , in (template) } 
&(ROPE) 
list(seqEvent) 

active if it contains at least one active or pending field, 
otherwise t is passive. An active tuple becomes passive, 
and thus visible for matching in Tuple Space, when all of 
its originally active or pending fields become passive. 

Multiple possible meanings of an individual Linda 
process’s computation exist, when considered in the 
context of the multiple Linda processes that together 
comprise Tuple Space computation. Each state transition 
in VCRTs represents one of the possible cumulative mean- 
ings of the active or pending tuple fields making computa- 
tional progress in that transition. We address these many 
possible individual and cumulative meanings when we 
describe the transition relation. 

2.2.2 Operational semantics for Linda: VCRTs 
extends the syntax of the Linda primitives with a Tuple 
Space handle prefix. This handle can refer to the Tuple 
Space in which the issuing Linda process resides (Le. 
‘self’), or it can be a Tuple Space handle acquired by the 
issuing Linda process during the course of computation. 
The use of a Tuple Space handle is consistent with 
commercial implementations of Tuple Space. The existence 
of this handle is explained when we discuss Tuple Space 
composition later in this section. Tuple Space handles are 
nothing more than values, and may thus reside as fields 
within tuples in Tuple Space. In the absence of composition, 
acquiring a Tuple Space handle h reduces to matching and 
copying a tuple that contains h as one of its values. 

14 

We present the Scheme-based semantics of VCRTs in 
detail in this section. Not all of the Scheme functions that 
appear in Figs. 5-9 and Fig. 12 are discussed at the same 
level of detail. We give an overview of the transition and 
view relations, focusing on important aspects of Tuple 
Space computation and view generation. Fig. 4 contains 
the domain specification for the operational semantics 
described in this section. 

Computation proceeds in this instance of VCR 
through invocation of the transition relation F - d e l t a .  
F - del t a  takes a pair ~Earguments, tree 0 and the set of 
communication closures A, and elaborates the next state in 
the trace of 0. There are two phases in a VCRTs transition: 
the inter-process phase and the intra-process phase. The 
inter-process phase, or communication phase, specified by 
F - LanibdaBar, conccrns the computational progress of 
the Linda primitives in A. The intra-process phase, specified 
by G, concerns the computational progress of active Linda 
processes within ccur. F - de l  t a  returns the pair containing 
the elaliorated tree-on,, and the resulting new set of commu- 
nication closures A,,, , 

During the first phase of a VCRTs transition, function 
F - LanibdaBar ch-ooses a random subset of communica- 
tion closures from A to attempt to reduce. In VCRTs, each 
communication closure represents the computational 
progress of an issued Linda primitive. The domain speci- 
fication for the different closure forms is included in Fig. 4. 
From the perspective external to F - LambdaBar, these 
closures make computational progress in parallel. Linda 
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(define F-delta 
(lambda (state-LBar) 

(let ((sigma (get-state state-LBar)) (LBar (get-LBar state-LBar))) 
(let ( (sigmacur (get-cur-state sigma) ) ) 

(let ( (new-state-LBar ( G  (F-LambdaBar 
(list sigmacur LBar))))) 

(let ((newsigma (get-state new-state-LBar)) 
(newLBar (get-LBar new-state-LBar))) 

(list (elaborate-sigma sigma newsigma) (newLBar)))))))) 

(define get-cur-state 
(lambda (sigma) 

(let ((next-sigma (get-next-state sigma))) 
(if (nul 1 ? next- s igma ) 

sigma 
(get-cur-state next-sigma))))) 

(define elaborate-sigma 
(lambda (sigma newsigma) 

(let ( (Abar (get-Abar sigma) ) 
(Tbar (get-Tbar sigma) ) 
(Pbar (get-Pbar sigma)) 
(next-sigma (get-next-state sigma) ) ) 

(make-state Abar Tbar Pbar newsigma) 
(make-state Abar Tbar Pbar 

(if (null? next-sigma) 

(elaborate-sigma 
next-sigma newsigma)))))) 

(define F-LambdaBar 
(lambda (s tate-LBar) 

(let ((sigma (get-state state-LBar)) 

(let ((Abar (get-Abar sigma)) 
(LBar (get-LBar state-LBar) ) ) 

(Tbar (get-Tbar sigma) ) 
( randclosures 

(get-rand-subset LBar))) 
( reduce-a1 1 
(as-list randclosures) 
(list (make-state Abar Tbar ‘ . ( )  ‘ 0 )  
(set-diff LambdaBar randclosures))))))) 

(define reduce-all 
(lambda (closures state-LBar) 

(if (null? closures) 
(s tate-LBar ) 
(reduce-all (cdr closures) (reduce-l (car closures) state-LBar) ) ) ) ) 

Fig. 5 VCRTSoperationalsemantics. Functions: F-delta, get -cur- state, elaborate- sigma, F-LambdaBar, reduce-all 

primitives are scheduled via a randomly ordered list to 
model the nondeterminism of race conditions and the 
satisfaction of tuple matching operations among competing 
synchronous requests. F - LambdaBar returns a o-A pair 
representing one possible result of reducing the commu- 
nication closures. 

To better understand the fimctions that reduce closures in 
A, we take a moment to examine more closely the closure 
domain from Fig. 4. The closure domains that form closure 
characterise the stages through which communication activity 
proceeds in Tuple Space. The form of closure domains 
asynchC1, synchCl and sendel specifies that a lambda 
expression 1 be sent to a designated A set. Closures from 
domains asynchCl and synchCI explicitly delay the evaluation 
of 2; domain sendcl explicitly forces the evaluation of 2. The 
designation of the A set is through a Tuple Space handle. The 
notion of sending a closure, and the notion of Tuple Space 
handles, both derive from our ongoing research in Tuple 
Space composition. The processing of the send closure results 
in the set union of the A designated by handle and the 
singleton set containing element A. 
IEE Proc.-Sofm., Vol. 1.50, No. 2, April 2003 

Functions reduce  - o u t  and reduce - e v a l  bot& 
take an asynchronous communicati_on closure and a o-A 
pair as arguments, and return a o-A pair. The reduce-  
o u t  function adds a passive tuple to Tuple Space, and 
generates event ’ Ecrea ted .  Similarly, reduce  - e v a l  
adds an active tuple to Tuple Space, and generates event 
’ Egenerat ing.  

Function reduce  - send returns an updated G-A pair. 
In the case of delayed evaluation, reduce-send adds the send 
argument of 2 to A. Otherwise, evaluation of the send 
argument of 2 is forced, and reduce - send attempts to 
reduce the let expression containing a synchronous Linda 
primitive. The let expression fails to reduce if there is no 
match in Tuple Space for the underlying r d  ( ) or i n  ( ) 
operation’s template. If the let expression cannot be eval- 
Eated, reduce - send adds /z back to A. Adding 2 back to 
A permits future reduction attempts. Otherwise, the let 
expression reduces, reduce - send adds the new closure 
to A, and G,  upon return, reflects the reduced let expression 
(for example, a tuple might have been removed from Tuple 
Space). 
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(def ine reduce-1 

(cond 
(lambda (closure state-LBar) 

( ( o u t ?  c losure)  

( ( e v a l ?  c losure)  

( ( send?  closure)  

( ( r e a c t ?  c losure)  

(reduce-out c losure s ta te-LBar))  

(reduce-eval c losure state-LBar) ) 

(reduce-send ctosure s ta te-LBar))  

(reduce-react c losure s t a t e - L B a r ) ) ) ) )  

(def ine reduce-out 
(lambda (closure state-LBar) 

( l e t  ( (sigma ( g e t f s t a t e  s ta te-LBar))  ( t  (get-template c losu re )  ) )  

( l e t  ((Abar (get-Abar sigma)) (Tbar (get-Tbar sigma) ) 
(Pbar (get-Pbar s i g m a ) ) )  

( l e t  ((newTbar ( u n i o n  Tbar ( s ing le ton  t ) ) )  
(newPl~ar (union Pbar (s ingleton 

(make-event 'Ec.reated t) ) ) ) ) 

( l i s t  (make-state Abar newTbar newPbar ' ( )  ) 
(get-LBar state-LBar) ) ) ) ) ) )  

(de f ine  reduce-eval 
(lambda (closure state-LBar) 

( l e t  ((sigma (ge t - s t , s t e  state-LBar) ) ( t  (get-template c losu re )  ) ) 

( l e t  ((Abar (get-Abar sigma)) (Tbar (get-Tbar sigma) ) 
(Pbar (get-Pbar sigma) ) ) 

( l e t  ((newAbar (union Abar ( s ing le ton  t ) ) )  
(newPbar (union Pbar ( s i n g l e  ton 

( l i s t  (make-state newAbar Tbar newPbar ' 0 )  
(get-LBar s t a t e - L B a r ) ) ) ) ) ) )  

(make-event 'Egenerating t )  ) ) ) ) 

(de f ine  reduce-react 
(lambda (closure state-LBar) 

( l e t  ((sigma ( g e t - s t a t e  s ta te-LBar))  (LBar (get-LBar state-LBar) ) )  

( l e t  ((Abar (get-Abar sigma) ) (Tbar (get-Tbar sigma) ) 
(Pbar (get-Pbar sigma)) ) 

( l e t  ( ( f i e l d - k  ( g e t - f i e l d  tup le - j  (get-k c l o s u r e ) ) ) )  
( l e t  ( ( t u p l e - j  (get- tuple  Ahar ( g e t - j  c l o s u r e ) ) ) )  

( l e t  ( (new-field-k ( se t - f i e ld - type  
(bind f i e ld -k  ( g e t - t  c l o s u r e ) )  ' A c t i v e ) ) )  

( l e t  ( (new-tuple-j ( add- f i e ld  (remove-field 
tuple-  j f ie ld-k)  new-f i e ld -k )  ) ) 

( l e t  ((newAhar ( u n i o n  ( s e t - d i f f  Abar 
(s ingleton tuple-  j ) ) 

(s ingleton n e w - t u p l e - j ) ) ) )  
( l i s t  (make-state newAbar Tbar Phar ' 0 )  

LBar) ) ) ) ) ) ) ) ) ) 

Fig. 6 VCRTs operational semantics. Functions: reduce - 1, reduce - out ,  reduce- eval, reduce - r eac t  

Functions reduce - rd and reduce - in boJh take a 
synchronous communication closure and a a-A pair as 
arguments, and return either a tuple-state pair or a null. 
Both functions attempt to find a matching tuple in Tuple 
Space and if unsuccessful, return null. If a match exists, 
reduce - rd returns a copy of the matching tuple, and 
generates event ' Ecopied. Similarly, reduce - in 
returns a copy of matching tuple t, but also removes t 
from Tuple Space, while generating event ' Econsumed. 

The reactivate form of a communication closure speci- 
fies which field of which tuple contains a pending Linda 
process that is to be reactivated. Specifically, the 
reduce- react function updates tsubj [IC] to make 
it an active Linda process, and fills its evaluation context 
with redex t. reduce - react is applied to a closure and 
a orA pair, where the closure contains j , k and t. The 
o-A pair returned by reduce - react contains the 
updated tuple. 

16 

During the second phase of a VCRTs transition, function 
G chooses a random subset of active Linda processes to 
make computational progress. From the perspective exter- 
nal to !? - LambdaBar, these processes make computa- 
tional progress in parallel. Internal to G, Linda processes 
are scheduled via the genMeaning function. The 
sequence does not matter since, during this intra-process 
phase of tranjition, no Tuple Space interactions occur. G 
returns a o-A pair representing one possible cumulative 
meaning of the random subset of active Linda processes 
making computational progress. 

A closer look at genMeaning is in order. Within a 
concurrent system, in general, it is possible for individual 
processes to make simultaneous computational progress at 
independent, variable rates. Thus, for VCRTs, it is incum- 
bent upon genMeaning to be capable of reflecting all 
possible combinations of computational progress among a 
list of Linda processes in the o-A pair it returns. With the 
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help of F -mu, genMeaning satisfies this requirement. 
For each Linda process, F -mu randomly chooses a mean- 
ing from the set of all possible meanings that Lm could 
return, i.e. each process proceeds for some random amount 
of its total potential computational progress. 

Function Lm is the high-level Linda meaning function 
for a process $[k]  in FA. Lm handles three general cases. 
Either process $[k] makes computational progress invol- 
ving no Linda primitives, but still has remaining compu- 
tation; process t,[k] makes computational progress 
involving no Linda primitives, and replaces itself with a 
typed return value; or process t,[k] makes computational 
progress, the last part of which is a Linda primitive. Lm 
assumes the existence of helper function Lm - comp to 
return all possible meanings of internal Linda process 
computation (that is, up to, but not including, a Linda 

primitive function). A random choice determines how 
$[k] gets updated. In the case of the final active process 
within $ becoming passive, Lm moves 9 from the set of 
active tuples to the set of passive tuples, and generates 
event I Egenerated. 

In the case where $[k]’s computational progress includes 
a Linda primitive, function Lm - prim finishes the work Lm 
started, The two main cases of Linda primitives are 
asynchronous and synchronous. In either case, Lm- prim 
constructs the appropriate closure forms and adds the 
closure containing the primitive request to A. In the case 
of the synchronous primitive, Lm -prim also changes $[k] 
from active to pending. 

The careful reader may question the need for a double 
choice of meanings among Lm and F -mu for a given Linda 
process ~ [ k ] .  Briefly, Lm selects a random meaning for 

(define reduce-send 
(lambda (closure state-LBar) 

(let ((send-arg (get-send-arg closure))) 
(if (delayed? send-arg) 

(let ((LBarl (union (cadr state-LBar) 

(list (car state-LBar) LBarl)) 
(singleton (strip-delay send-arg))))) 

(let ( (closure-state 
(reduce-let (strip-force send-arg) state-LBar))) 

(if (null? closure-state) 
(list (car state-LBar) 

(let ( (LBarl (union (cadr state-LBar) 
(union (cadr state-LBar) (singleton closure))) 

(car closure-state) 1 ) )  
(list (cadr closure-state) LBarl) ) ) ) ) ) ) ) 

(define reduce-let 
(lambda (closure state-LBar) 

(let ((Lprim (get-forced closure)) (react (get-delayed closure))) 
(let ((tuple-state 

(if (rd? Lprim) 
(reduce-rd closure state-LBar) 
(reduce-in closure state-LBar)))) 

(if (null? tuple-state) 
‘ ( )  ;prim failed 
(let ((bound-closure (bind (car tuple-state) react)) 

(newstate (cadr tuple-state) ) )  

(list bound-closure newstate))))))) 

(define exists? 
(lambda (TBar f) 

(if (null? TBar) 
( ’  0 )  
(let ((tuple (car TBar))) 

(if (f tuple) 
(tuple) 
(exists? (set-diff TBar (singleton tuple)) f)))))) 

(define reduce-rd 
(lambda (closure state-LBar) 

(let ((sigma (get-state state-LBar)) 
(template (get-template closure))) 

(let ( (Abar (get-Abar sigma) ) (Tbar (get-Tbar sigma) ) 
(Pbar (get-Pbar sigma) ) ) 

(let ((t (exists? Tbar f))) 
(let ((f ((lambda t) (match? template t)))) 

(if (null? t) 
( ‘  0 )  
(let ( (newPbar (union Pbar (make-event ’Ecopied t) ) ) ) 

(make-state Abar Tbar newPbar ’ 0 ) ) )  
(let ( (newsigma 

(list t newsigma)))))))))) 

Fig. 7 
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$[IC]; F - m u  constructs the set of all possible meanings that 
~m could return for t,[k], only to select from this set a 
random meaning for ~ [ k ] .  Clearly, we could have structured 
a single random choice, but not doing so permits us to 
isolate and investigate different scheduling policies and 
protocols. For each transition, the number of possible next 
states is combinatorially large. Recall that Lm and F - m u  
are part of the function that generates children, one of 
which the transition relation chooses to elaborate, in lazy 
tree 0. Each random choice the transition relation makes 
prunes 'subsets of possible next states, until one remaining 
state is finally elaborated. Since Lm-comp is a helper 
function, the double choice of meanings emphasises the 
possibilities for a single Linda process, and is, consistent 
with the other random choices made during transition. 

This concludes our description of the Scheme functions 
associated with state transition in VCRTs. The functional 

nature of Scheme gives a precise and elegant description of 
the operational semantics for Linda and Tuple Space. 
Equally precise and elegant is the Scheme implementation 
of the VCRTs view relation. It is instructive to note that the 
view relation for VCRTs is equivalent to the uninstantiated 
view relation presented in Fig. 3 of Section 2.1. The 
transition and view relations together allow us to reason 
about all possible behaviours of a distributed system's 
computation, and all possible views of each of those 
behaviours. Thus we have a powerful tool for identifying 
and reasoning about properties of distributed computation. 

3 Composition 

The decision to model Tuple Space composition in VCRTs 
stemmed largely from commercial Tuple Space implemen- 

(define reduce-in 
(lambda (closure state-LBar) 

(let ((sigma (get-state state-LBar)) 

(let ( (Abar (get-Abar sigma) ) 
(template (get-template closure) ) ) 

(Tbar (get-Tbar sigma) ) 
(Pbar (get-Pbar sigma) ) ) 

(let ((f ((lambda t) 
(match? template t)))) 

(let ((t (exists? Tbar f))) 
(if (null? t) 

( '  0 )  
(let ((newTbar (set-diff 

Tbar (singleton t) ) ) 

(make-event 'Econsumed t)))) 

Abar newTbar newPbar ' ( )  ) ) ) 

(newPbar (union Pbar 

(let ( (newsigma (make-state 

(list t newsigma)))))))))) 

(define G 
(lambda ( s  tate-LBar ) 

(let ((sigma (get-state state-LBar)) 

(let ((Abar (yet-Abar sigma)) 
(LBar (get-LBar state-LBar) ) ) 

(Tbar (get-Tbar sigma) ) 
(Pbar (get-Pbar sigma) ) ) 

(let ((Lprocs (get-active-procs Abar))) 
(let ((randsub (get-rand-subset Lprocs))) 

(genbleaning (as-list randsub) 
(list (make-state 

Abar Tbar Pbar ' ( )  ) 

LBar)))))))) 

(define genMeaning 
(lambda (Lprocs state-LBar) 

state-LBar 
(let ((jk-pair (car Lprocs)) 

(let ((j (get-j jk-pair)) 
(k (get-k j k - p a i r ) )  
(Abz.r (get-Abar sigma) ) ) 

(genMeaning (cdr Lprocs) 

(if (null? Lprocs) 

(sigma (get-state state-LElar) ) ) 

(let ((tsubj (get-tuple j Abar))) 

(F-mu tsubj k state--LBar) ) ) ) ) ) ) I  

(define F-mu 
(lambda (tsubj k st.ate-LBar) 

(let ((meanings-of-tsubj-k (gen-set Lm tsubj k state-LBar))) 
(car (as-list meanings-of-tsubj-k))))) 

Fig. 8 VCRTs operational semantics. Functions: reduce - in, G, genMeaning, F -mu 
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define Lm 
(lambda (tsubj k state-LBar) 
(let ( (sigma (get-state state-LBar) ) 

(let ( (Abar (get-Abar sigma) ) 
(LBar (get-LBar state-LBar) ) ) 

(Tbar (get-Tbar sigma) ) 
(Pbar (get-Pbar sigma) ) ) 

(let ((tsubjl (tupleupdate tsubj k 
(composition rand Lm-comp)))) 

(if (exists-active-field? tsubjl) 
(let ((Abarl (union 

(set-diff Abar (singleton tsubj)) 
(singleton tsubjl)))) 

(process-redex tsubjl k 
Abarl Tbar Pbar LBar) ) 

(singleton tsubj))) 

(singleton tsubjl) ) ) 

(singleton (make-event 

(let ((Abarl (set-diff Abar 

(Tbarl (union Tbar 

(Pbarl (union Pbar 

'Egenerated tsubjl))))) 

Abarl Tbarl Pbarl LBar)))))))) 
(process-redex tsubjl k 

(define process-redex 
(lambda (tsubj k Abar Tbar Pbar LBar) 

(let ((redex (get-redex tsubj k))) 
(if (linda-prim? redex) 

(Lm-prim tsubj k 
(list (make-state Abar Tbar Pbar ' 0 )  

LBar) ) 

LBar) ) ) ) ) 

(list (make-state Abar Tbar Pbar ' 0 )  

Fig. 9 VCRTs operational semantics. Functions: Lm, process - redex 

tations that are based on multiple Tuple Spaces. The 
decision to express the operational semantics of VCRTs 
in Scheme was motivated by a desire to gain a stronger 
intuition into how VCRrs could be implemented. Also, 
operational semantics permits the choice of level of 
abstraction, which includes the expression of the semantics 
itself. An additional benefit of using Scheme was the 
language's support for closures. 

The semantics of Linda primitives with explicit Tuple 
Space handles led to wrapping the primitive expressions in 
closures, along with their corresponding handles. Each 
closure explicated the routing requirements for a Linda 
primitive based on the primitive's Tuple Space handle and 
the handle of the Tuple Space from which the primitive was 
issued. Since VCR is a model for concurrency, we needed an 
abstraction to support the evaluation of multiple simulta- 
neous Linda primitives or, in general, multiple simultaneous 
communications. This need evolved into the introduction of 
VCR's set of message closures, 4. 

By evolving the definition of S from that of a tciple to a 
grammar, two things are accomplished. -First, S, itself, 
becomes a parameter of VCR! Second, S represents not 
just the model of an individual concurrent system we 
wish to reason about but, rather, the model for an infinite 
variety of composed systems. Depending on the particular 
composition argument used for parameter S, different 
composition relationships are possible. For example, 
consider the_ gramm_ar partially specified by production 
rule S+ (S*o, A, Y). One possible derivation is shown 
in Fig. 10. Each nonterminal S is labelled with unique 
numeric subscripts corresponding to the tuples they derive. 
The order of derivation is according to the subscripts of the 
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nonterminals. The final string of Fig. 10 corresponds to the 
composition tree of Fig. 11. 

The grammar produces two kinds of nodes: leaf nodes 
and coniposition (interior) ?odes. Leaf nodes look like the 
old definition o_f S,  (a, AL Y); composition nodes are 
instances of (St 0, A, Y). Technically, composition 
nodes contain their children nodes. By extension, the 
root node r of a composition tree contains the entire tree 
rooted by r. Thus, representation of r as a tree is really an 
expansion of root node r, whose origin is one possible 
string generated by our grammar. 

Fig. 11 Example composition tree from derivation of s 
79 



(define L m - p r i m  
(lambda ( t s u b j  k state-LBar) 

( l e t  ( (sigma ( g e t - s t a t e  state-LBar) ) (LBar (get-LBar state-LBar) ) ) 

( l e t  ( (Abar (get-Abar sigma) ) (Tbar (get-Tbar sigma) ) 
(Pbar (get-Pbar sigma) ) (redex (get-redex t s u b j  k) ) ) 

( l e t  ( (handle  (qet-handle redex))  
(Iprim (get-Linda-prim redex) ) 
(template (get-template r e d e x ) ) )  

( i f  (asynch-prim? lprim) 
;asynchronous pr imi t ive  
( l e t  ( (lambda3 ( l i s t  lprim template) ) ) 

( l e t  ( (lambda2 ( l i s t  ' for 'ze  lambda3) ) ) 
( l e t  ((lambda1 ( l i s t  ( 'send handle 

( l i s t  'de lay  l a m b d a 2 ) ) ) ) )  
( l e t  ((LBarl  (union LBar 

( s ing le ton  lambdal) ) ) 

t s u b j  k reduce-asynch))) 
( t s u b j l  ( tupleupdate 

( l e t  ( (Abar l  (union 
( s e t - d i f f  Abar 
( s ing le ton  t s u b j ) )  
( s ing le ton  t s u b j l )  ) ) ) 

( l i s t  (make-state 

L B a r l ) ) ) ) ) )  
Abarl Tbar Pbar ' ( )  ) 

;synchron3us pr imi t ive  
( l e t  ( (lanbda4 ( l i s t  lprim template) ) ) 

( l e t  ((lambda3 ( l i s t  ' l e t  t 
( l i s t  ' f o r c e  lambda4) 
' i n  ( l i s t  'de lay  ( l i s t  

' r e a c t  t subj  k t ) ) ) ) )  
( l e t  ((lambda2 ( l i s t  'send 

(get-self-handle state-LBar) 
( l i s t  ' f o r c e  lambda3) ) ) ) 

( l e t  (( lambdal ( l i s t  'send handle 
( l i s t  'de lay  lambda2) ) ) ) 

( s ing le ton  lambdal) ) ) 
( l e t  ((LBarl  (union LBar 

( t s u b j  1 (tupleupdate 
t subj  k 
make-pending))) 

( l e t  ( (Abar l  (union ( s e t - d i f f  
Abar ( s ing le ton  t s u b j )  ) 

( s ing le ton  t s u b j l )  ) ) )  

( l i s t  (make-s t a t e  
Abarl T b a r  Pbar ' 0 ) 

L B a r l ) ) ) ) ) ) ) ) ) ) ) ) )  

Fig. 12 VCRTs operational semantics. Function: Lm- p r i m  

Trees are a meaningful absQaction for reasoning about 
compositiop. Consider a node SI within a composition tree. 
Node that S, is a tuple cqntaining a computaticn space CJ, a 
set _Of message closures A, and a set of views Y. The scope 
of A and 7 is the subtree with root node SI. ?ow coqsider 
a composition tree in its entirety. Since CJ, A and Y are 
parameters, VCR can model composition of heterogeneous 
distributed systems. That is, different leaves of the compo- 
sition tree may represent different instances of a c!ncurrect 
system, as specified by their respective CJ, A and Y 
parameter values. 

One of the advantages of event-based reasoning is the 
ability-through parameterisation-to define common 
events across heterogeneous systems. Within each leaf 
node, multiple simultaneous views of its respective local 
computation are possible, just as is possible i n  VCR 
without composition. Taking the leaf nodes as an aggre- 
gate, though, composition in VCR now supports a natural 
partitioning of parallel event traces and their respective 
views. There is not necessarily a temporal relationship 
between corresponding elements of the computational 
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traces of a composition tree's leaf nodes. Such temporal 
relationships must be reasoned about using a common 
composition node. 

Finally, consider the composition nodes. A composition 
node, like a leaf node, represents the possibility for 
multiple simultaneous views of its own local computation. 
Further, since the scope of a composition node c 
represents that of the entire subtree rooted at c, a subset 
of events present in c's parallel event trace, and 
corresponding views, may represent some subset of the 
aggregate events found in the subtrees of c's children. 
The extent to which events from the subtrees of node 
c's children occur in c is itself a parameter. For example, 
one may wish to compose two or more systems according 
to certain security policies. Alternatively, or additionally, 
one may wish to compose systems in a way that allows 
for relevance filtering to promote greater scalability. 
In both of these examples, the ability to limit event 
occurren.ce in composition nodes through parameterisation 
supports modelling composition at a desirable level 
of abstraction. 
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To specify Tuple Space composition in VCRTs requirgs 
adding one -further production rule to grammar S: 
n+ (A, 7, P, (T). Tuple Space composition also requires 
a change to reduce-send, the part _Of the transition 
relation that reduces message closures in A. Further details 
of Tuple Space composition for VCRTs, and for VCR in 
general, are beyond the scope of this paper, but can be found 
in Smith [l]. 

4 Demonstration of reasoning with VCR 

To demonstrate the utility of reasoning with parallel events 
and views, we present a case study of two primitive 
operations that were removed from an early definition of 
Linda. Section 4.1 introduces the two Linda predicate 
operations involved in the case study. The remainder of 
the section is the demonstration. 

4.7 Ambiguous Linda predicate operations 
In addition to the four primitives rd ( )  , in ( ) , out ( ) 
and eval ( ) , the Linda definition once included predicate 
versions of rd ( ) and in ( ) . Unlike the rd ( ) and in ( ) 
primitives, predicate operations rdp ( ) and inp ( ) were 
nonblocking primitives. The goal was to provide tuple 
matching capabilities without the possibility of blocking. 
The Linda predicate operations seemed like a useful idea, 
but their meaning proved to be semantically ambiguous, 
and they were subsequently removed from the formal 
Linda definition. 

First, we demonstrate the ambiguity of the Linda predi- 
cate operations when our means of reasoning is restricted 
to an interleaved sequential event trace semantics like that 
provided by CSP. The ambiguity is subtle and, in general, 
not well understood. Next, we demonstrate how reasoning 
about the same computation with an appropriate instance 
of VCR disambiguates the meaning of the Linda predicate 
operations. 

Predicate operations rdp ( ) and inp ( ) attempt 
to match tuples for copy or removal from Tuple Space. 
A successful operation returns the value one (1) and the 
matched tuple in the form of a template. A failure, rather 
than blocking, returns the value zero (0) with no changes to 
the template. When a match is successful, no ambiguity 
exists. It is not clear, however, what it means when a 
predicate operation returns a zero. 

The ambiguity of the Linda predicate operations is a 
consequence of modelling concurrency through an arbi- 
trary interleaving of Tuple Space interactions. Jensen 
noted that when a predicate operation returns zero, 
‘only if every existing process is captured in an interac- 
tion point does the operation make sense’ [7]. Suppose 
three Linda processes, p I  , p2 and p 3 ,  are executing 
concurrently in Tuple Space. Further suppose that each 
of these processes simultaneously issues a Linda primi- 
tive as depicted in Fig. 13. 

Assume no tuples in Tuple Space exist that match 
template t’, except for the tuple t being placed in Tuple 
Space by process p 3 .  Together, processes pI , p 2  and p 3  
constitute an interaction point, as referred to by Jensen. 
There are several examples of ambiguity, but discussing 
one possibility will suffice. First consider that events are 
instantaneous, even though time is continuous. The 
outcome of the predicate operations is nondeterministic; 
either or both of the rdp (t’) and inp (t’) primitives 
may succeed or fail as they occur instantaneously with the 
out ( t ) primitive. 
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Fig. 13 
point in Tuple Space involving three processes 

Case study for Lindapredicate ambiguity: an interaction 

For this case study, let the observable events be the 
Linda primitive operations themselves (Le. the communi- 
cations). For example, out ( t ) is itself an event, repre- 
senting a tuple placed in Tuple Space. The predicate 
operations require additional decoration to convey 
success or failure. Let bar notation denote failure for a 
predicate operation. For example, inp (t’) represents the 
event of a successful predicate, returning value 1, in 
addition to the tuple successfully matched and removed 
from Tuple Space; rdp (t7 represents the event of a 
failed predicate, returning value 0. 

The events of this interaction point occur in parallel, and 
an idealised observer keeping a trace of these events must 
record them in some arbitrary order. Assuming perfect 
observation, there are six possible correct orderings. 
Reasoning about the computation from any one of these 
traces, what can we say about the state of the system after 
a predicate operation fails? The unfortunate answer is 
‘nothing’. More specifically, upon failure of a predicate 
operation, does a tuple exist in Tuple Space that matches 
the predicate operation’s template? The answer is that it 
may or it may not. 

This case study involves two distinct levels of nondeter- 
minism, one dependent upon the other. Since what happens 
is nondeterministic, then the representation of what 
happened is nondeterministic. The first level concerns 
computational history; the second level concems the arbi- 
trary interleaving of events. Once we fix the outcome of the 
first level of nondeterminism, that is, determine the events 
that actually occurred we may proceed to choose one 
possible interleaving of those events for the idealised obser- 
ver to record in the event trace. The choice of interleaving is 
the second level of nondeterminism. 

Suppose that, in the interaction point of our case study, 
process p I  and p2’s predicate operations fail. In this case, 
the six possible orderings an idealised observer can record 
are the following: 

1. rdp(t’) +inp(t’)+out(t) 
2. rdp(t‘) +out(t) +inp(t’) 
3. inp(t’) +rdp(t’) +out(t) 
4. inp(t‘) +out(t) -trdp(t‘) 
5 .  out(t) +rdp(t’) -+inp(t’) 
6. out(t) +inp(t’) +rdp(t’) 

The idealised observer may choose to record any one of 
the six possible interleavings in the trace. All but the first 
and the third interleavings make no sense when reasoning 
about the trace of computation. Depending on the context 
of the trace, the first and third interleavings could also lead 
to ambiguous meanings of failed predicate operations. In 
cases 2, 4, 5 and 6, an out (t) operation occurs just 
before one or both predicate operations, yet the events 
corresponding to the outcome of those predicates indicate 
failure. It is natural to ask the question: ‘This predicate 
just failed, but is there a tuple in Tuple Space that matches 
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the predicate’s template?’ According to these interleav- 
ings, a matching tuple t existed in Tuple Space; the 
predicates should not have failed according to the defini- 
tion of a failed predicate operation. The meaning of a 
failed predicate operation breaks down in the presence of 
concurrency expressed as an arbitrary inteqleaving of 
atomic events. This breakdown in meaning is I due to the 
restriction of representing the history of a computation as 
a total ordering of atomic events. More specifically, within 
the context of a sequential event trace, one cannot distin- 
guish the intermediate points between concurrent inter- 
leavings from those of events recorded sequentially. 
Reasoning about computation with a sequential event 
trace leads to ambiguity for failed Linda predicate opera- 
tions rdp (t’) and i n p  (t’) . 

4.2 Clarity 
Recording a parallel event sequentially does not preserve 
information regarding event simultaneity. With no seman- 
tic information about event simultaneity, the meaning of a 
failed predicate operation is ambiguous. The transforma- 
tion from a parallel event to a total ordering of that 
parallel event is one-way. Given an interleaved trace- 
that is, a total ordering of events, some of which may have 
occurred simultaneously-we cannot in general recover 
the concurrent events from which that interleaved trace 
was generated. 

A fundamental principle, that of entropy, underlies the 
problem of representing the concurrency of rnultiple 
processes by interleaving their respective traces of compu- 
tation. The principle of entropy provides a measure of the 
lack of order in a system or, alternatively, a measure of 
disorder in a system. The system, for our purposes, refers 
to models of computation. There is an inverse relationship 
between the level of order represented by a model’s 
computation, and its level of entropy. When a model’s 
computation has the property of being in a state of order, 
it has low entropy. Conversely, when a model’s computa- 
tion has the property of being in a state of maximum 
disorder, it has high entropy. We state the loss of entropy 
property for interleaved traces. 

Property (Loss of Entropy): Given a concurrent computa- 
tion c, let trace tr be an arbitrary interleaving of atomic 
events from c, and let el and e2 be two events within tr, 
such that el precedes e2. A loss of entropy du.e to tr 
precludes identifying whether e l  and e2 occurred Isequen- 
tially or concurrently in c. 

By interleaving concurrent events to form a sequential 
event trace we lose concurrency information about its 
computation. Interleaving results in a total ordering of 
the events of a concurrent computation, an overspecifica- 
tion of the order in which events actually occurred. 
Concurrent models of computation that proceed in this 
fashion accept an inherent loss of entropy. A loss of 

entropy is not always a bad thing; CSP has certainly 
demonstrated its utility for reasoning about concurrency 
for a long time. But loss of entropy does limit reasoning 
about certain computational properties, and leads to 
problems such as the ambiguity of the Linda predicate 
operations in our case study. 

The relationship between the trace of a computation and 
the multiple views of that computation’s history reflects the 
approach of VCR to model multiple possible losses of 
entropy (Le. views) from a single high level of entropy (i.e. 
parallel event trace). Furthermore, VCR views differ from 
CSP trace interleavings in two important ways. First, VCR 
distinguishes a computation’s history from its views, and 
directly supports reasoning about multiple views of the 
same computation. Second, addressing the issue from the 
loss of entropy property, a view is a list of ROPES, not a list 
of interleaved atomic events. The observer corresponding 
to a view of computation understands implicitly that an 
event within a ROPE occurred concurrently with the other 
events of that ROPE (within the bounds of the time 
granularity), after any events in a preceding ROPE, and 
before any events in a successive ROPE. 

The parallel events feature of VCR makes it possible to 
reason about predicate tuple copy and removal operations 
found in commercial Tuple Space systems. A parallel 
event is capable of capturing the corresponding events of 
every process involved in an interaction point in Tuple 
Space. This capability disambiguates the meaning of a 
failed predicate operation, which makes it possible to 
reintroduce predicate operations to the Linda definition 
without recreating the semantic conflicts that led to their 
removal. 

Consider, once again, the six possible interleavings a 
perfect observer might record for the interaction point in 
Tuple Space shown in Fig. 13, but this time, as recorded by 
six concurrent (and in this case, perfect) observers, as 
shown in Fig. 14. The additional structure within a view of 
computation, compared to that of an interleaved trace, 
permits an unambiguous answer to the question raised 
earlier in this section: ‘This predicate just failed, but is 
there a tuple in Tuple Space that matches the predicate’s 
template?’ By considering all the events within the ROPE 
of the failed predicate operation, we can answer yes or no, 
without ambiguity or apparent contradiction. In our case 
study from Fig. 13, given both predicate operations nonde- 
terministically failed within a ROPE containing the 
out ( t ) and no other events, we know that tuple t 
exists in Tuple Space. The transition to the next state 
does not occur between events; it occurs from one parallel 
event to the next. For this purpose, the order of events 
within a ROPE does not matter; it is the scope of concur- 
rency that is important. 

4.3 Importance 
Our case study of the Linda predicate operations is impor- 
tant for several reasons. First, we demonstrated the power 

1. . . . [ p r e v i o u s  ROPEl--r[riJp(t’)~inp(t’)~out(t)]+ [nex t  R O P E ] .  . . 
2. . . . [ p r e v i o u s  ROPE] - + F z + o u t  (t) + Z m ] +  [next  ROPE] . . . 
3 .  . . . [ p r e v i o u s  ROPE]-+[;;?p(t‘)+rdp(t’)+out(t)]+[next R O P E ] .  . . 
4. . . . [ p r e v i o u s  ROPE]-+Flp(t’)+out(t)+rdp(t’)]+ [next  R O P E ] .  . . 
5. . . . [ p r e v i o u s  ROPE]-+[o.~t(t)+rdp(t’)+inp(t’)]+[next ROPE]. . . 
6. . . . [ p r e v i o u s  ROPE]--,[o.it(t)+inp(t’)+rdp(t’[next ROPE]. . . 

~~ 

-- 
~ -- 

Fig. 14 

82 

Six viavs (lists of ROPES) of the same interaciion point in Tuple Space 

IEE Proc.-Sofm., Vol. 150, No. 2, April 2003 



and utility of view-centric reasoning. Second, we provided 
a framework that disambiguates the meaning of the Linda 
predicate operations rdp 0 and i np  0, making a case 
for their reintroduction into the Linda definition. Third, 
despite the removal of predicate operations from the formal 
Linda definition, several Tuple Space implementations, 
including Sun’s JavaSpaces [8] and IBM’s T Spaces [9], 
provide predicate tuple matching primitives. VCR 
improves the ability to reason formally about these 
commercial Tuple Space implementations by providing 
a framework capable of modelling the Linda predicate 
operations. 

5 Conclusions 

In Section 2, we introduced view-centric reasoning (VCR), 
a new framework for reasoning about properties of concur- 
rent computation. VCR extends CSP with multiple, 
imperfect observers and their respective views of the 
same computation. VCR is a general framework, capable 
of instantiation for different parallel and distributed 
paradigms. This paper presents one example of VCR 
instantiation, for the Linda coordination language and 
Tuple Space. Section 3 followed with a brief discussion 
of composition within the VCR framework in general, and 
for Linda and Tuple Space computation in particular. 

In Section 4, we pointed out the difficulties associated 
with reasoning directly about event simultaneity using 
interleaved traces, an approach supported by CSP. In 
particular, we identified the loss of entropy property. We 
then characterised VCR’s entropy-preserving abstractions 
of parallel events and ROPES. VCR is a new framework for 
reasoning about properties of concurrency. We demon- 
strated the usefulness of VCR by disambiguating the 
meaning of Linda predicate operations. Finally, we pointed 
out how the relevance of Linda predicate operations, 
variations of which exist in commercial Tuple Space 
implementations by Sun and IBM, compels us to create 
new instantiations of VCR to reason about safety and 
liveness properties of such systems. Future work on such 

instantiations will also require further investigation into 
Tuple Space composition. 
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