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Abstract 
 

The k-insertion and shuffle operations on formal languages have been extensively studied in the 
computer science and control systems literature. These operations can be viewed as purely abstract, as 
representations of biological processes or as models of the interleavings of concurrent processes. 
Questions naturally arise about closure and decidability. Many have been previously answered, especially 
as regards closure and non-closure of these operations on regular and context free languages. Here we 
will show the undecidability of a number of problems concerning the interaction of regular and context 
free languages under insertion and bounded shuffle, and the interaction of context free languages under 
self insertion and self bounded shuffle. Most of these proofs are consequences of the fact that the problem 
to decide if a Turing machine has an upper limit on execution time, independent of input, is undecidable. 
 
Keywords: Concatenation; Shuffle and insertion operators; Bounded shuffle; Self insertion and self 
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1 Introduction 

Define the k-insertion operation [ k ] on pairs of languages over some alphabet Σ by  
A  [ k ] B = { x1y1x2y2 … xkykxk+1 |  y1y2 … yk ∈ A, x1x2 … xkxk+1 ∈ B, xi, yj ∈ Σ*} 

Read  [ k ] as “A k-insert into B”. If A = B, we refer to the operation as k-self insertion. When  
k = 1, the superscript will be omitted; we will then refer to the operations simply as insertion and 
self insertion, respectively. 

The insertion operation merely splits elements of A into k parts, and then breaks an element 
of B apart into k+1 segments, so there are k places into which the parts of the A element can be 
inserted. This is done for all elements of A and B and for all possible ways to segment and then 
merge these elements according to the above rules. This means that we could choose to break the 
element of B so that we keep it intact and consider the k insert points to be at the start of the B 
word. Thus, the concatenation of A with B, A • B, is contained in A [ k ] B, for all k. 

Shuffle is an extension of insertion (or insertion is a simplification of shuffle). We define the 
shuffle product on pairs of languages over some alphabet Σ by A  B = ∪ j ≥ 1 A [ j ] B. Since 
a k+1 insert always includes all the strings in a k insert, one is tempted to define shuffle closure 
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as A  B = A [ k ] B, where  k is the smallest integer greater than 1 such that  
A [ k ] B = A [ k+1 ] B. The problem is that such a finite k might not exist. In fact, in this 
paper we will show that it is undecidable to determine whether or not such a k exists, when A is 
either regular or context free, and B is context free. One may define a bounded shuffle operation 
A [ k ] B = ∪ 1≤j≤k  A [ j ] B = A [ k ] B, but it is easily seen that A [ k ] B = A [ k ] B, 
which shows that this operation reduces to k-insertion. 

The shuffle operation [1] and the more primitive insertion operator [22] have been studied 
extensively in the computer science literature due to their inherent mathematical interest and 
their relation to other problems, such as interleaved execution in concurrent systems. More 
recently, these operations have become of interest in molecular computing, with the proof that 
contextual insertions and deletions are sufficient to simulate Turing machines, showing the 
computational completeness of molecular systems based on these two simple operations alone 
[6], [19].  

Issues of closure of classes of languages under the insertion and shuffle operations have been 
addressed in many papers including [3], [14], [15], [16], [19], [22], with the closure properties of 
the related deletion operation addressed in [21]. Decidability properties were considered in [19] 
for shuffle and in [7] for deletion. A comprehensive presentation of these topics and a more 
complete discussion of the notation used here may be found in [13].  

2 Undecidability of convergence of simple self insertion 

In [9], the authors presented a very simple proof that one cannot decide, for an arbitrary 
context free language L, whether or not L • L = L. The proof, repeated here, is the basis for our 
first undecidability result concerning insertion. 

 
Theorem 1 (Hughes and Selkow [10]): 
The problem to determine if L = Σ* is Turing reducible to the problem to decide if L • L ⊆ L, so 
long as L is selected from a class of languages C over the alphabet Σ for which we can decide if 
Σ ∪ {λ} ⊆ L.  
 
Proof:  
Let L be an arbitrary language in C. We claim that L = Σ* iff 

(1) Σ ∪ {λ} ⊆ L; and 
(2) L • L = L. 

Clearly, if L = Σ* then (1) and (2) trivially hold. Conversely, we have 
Σ* ⊆ L*= ∪ n≥0 Ln ⊆ L, 

which shows that L = Σ* (the first inclusion follows from (1), and the second one from (2)). � 
 

The above property (decidability of Σ ∪ {λ} ⊆ L) holds for the regular, context free and 
context sensitive classes of languages, but not for type 0, as that class’s membership problem is 
undecidable. In general, this result holds so long as we can determine membership of strings of 
length at most one, that is, alphabetic characters and the empty string. 
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Corollary 1:  
The problem “is L • L = L, for L context free or context sensitive?” is undecidable. 
 
Proof:   
This follows from the fact that the membership problem for context sensitive languages is 
decidable and the problem to decide if L = Σ* is undecidable, for L a context free language. � 

 
We will now show the corresponding theorem for any operation, ⊗, that subsumes self 

concatenation, that is where L • L ⊆ L ⊗ L. The simplest form of insertion, self insertion, is 
such an operation, since L • L ⊆ L  L. 
 
Theorem 2:  
The problem to determine if L = Σ* is Turing reducible to the problem to decide if L ⊗ L ⊆ L, 
so long as L • L ⊆ L ⊗ L and L is selected from a class of languages C over Σ for which we can 
decide if Σ ∪ {λ} ⊆ L.  
 
Proof:   
Let L be an arbitrary language in C. We claim that L = Σ* iff  

(1) Σ ∪ {λ} ⊆ L and  
(2) L ⊗ L ⊆ L.  

Clearly, if L = Σ* then (1) and (2) hold. The converse can be seen from  
Σ* ⊆ L*= ∪ n≥0 Ln ⊆ L. 

The first inclusion follows from (1), and the second from (1), (2) and the fact that  
L • L ⊆ L ⊗ L.   � 
 
Corollary 2:  
The problem “is L  L = L, for L context free or context sensitive?” is undecidable. 
 
Proof:   
This follows from the fact that the membership problem for context sensitive languages is 
decidable and the problem to decide if L = Σ* is undecidable, for L a context free language. � 

3 Mortality  

The Mortality Problem for Turing machines with an infinite input tape is the problem to 
determine, for an arbitrary machine M, whether or not M eventually halts no matter in what 
configuration it is started. This is not the Halting Problem, since it means that we cannot just 
consider well-behaved machines that always start in their start states, positioned to the right of 
their arguments and which always end up to the right of the answer, which immediately follows 
these arguments (a convention called Standard Turing Computation). It also means that we 
might start with an infinite number of marked squares on the tape, unlike a normal Turing 
machine, which must start with its tape only finitely marked.  

As is commonly done with Turing machines, we can, without loss of generality, limit the tape 
alphabet to {0,1}, where 0 denotes a blank, and 1 is the only mark (non-blank). Using that 
limitation on the tape alphabet, consider a function to compute x+1 from x, using Standard 
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Turing Computation and unary representations of numbers. Such a machine could copy its one 
argument to the immediate right of the original scanned square and then move to the end of the 
copy appending a 1. This machine always halts if it is started on a finitely marked tape, with the 
Standard Turing conventions obeyed. In fact, it can be written so it will always halt so long as 
the tape is finitely marked, even if the machine is started in other than the correct state and other 
than on the correct square. However, this machine is not mortal since, for example, it would run 
forever if started just to the right of an infinite sequence of 1’s; the copy operation could never 
end.   

The Mortality Problem was shown to be undecidable by Hooper [8]. This problem, although 
known to be decidable for some models of computation other than Turing machines, has been 
shown to be undecidable for two-counter machines [2]. The undecidability of this problem has 
turned out to be very useful in showing undecidability results for dynamical systems [2], [4], [5]. 
Although this paper does not address such results, we strongly believe that the results shown here 
may have significant applications to these problems. 

4 Constant time execution 

A Turing machine, M, is said to run in constant time if there is some finite positive integer s 
such that M, when started on any arbitrary finitely marked tape, executes at most s steps before 
halting. Formally, the set of all such machines can be described as  
Constant_Time = { M | ∃ s  ∀C [ STP(C, M, s) ] }, where STP is the computable predicate that 
returns true if and only if M, when started in the configuration C, halts in no more than s steps. 
This STP function is the one used in standard proofs of the existence of a universal machine. It is 
actually primitive recursive, and hence always halts no matter what input it is given. When one 
looks at this description of the set Constant_Time, it may seem that the problem of membership 
is not recursively enumerable since there are two alternating unbounded quantifiers. This is, 
however, deceptive, since in time s we cannot navigate over more than s tape squares. Thus, ∀C 
can be replaced by the bounded version ∀C |C| ≤ s, where |C| means the number of tape squares 
in C. This then reduces the predicate to a single unbounded existential quantifier, showing the 
problem to be recursively enumerable. Intuitively, we can check to see if the machine always 
halts in at most 1 step by writing down all configurations with one square (the scanned one) and 
an arbitrary state. If M halts in all cases, then it runs in constant time of 1. If this fails, then try all 
configuration of length at most 2. Continue this process, successively increasing the 
configuration length until a value is found for which M halts on all configurations of no greater 
length. This is guaranteed to halt if M ∈ Constant_Time. If, however, M is not in this set, then 
the procedure we just described runs forever. Thus, Constant_Time is semi-decidable 
(equivalently, recursively enumerable). 

The undecidability of Constant_Time was shown in [10] in 1981, but this result has 
remained essentially unknown, perhaps because the paper’s primary goal was showing a formal 
languages result, with Constant_Time being a vehicle to attain that result. In any case, we will 
outline the proof from that paper, since this is the key result we need to show the undecidability 
of a number of properties of the insertion and shuffle operations. 

Consider an arbitrary Turing machine M operating on a finitely marked tape. If  
M ∈ Constant_Time, then M clearly is mortal since it would never care about infinite 
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markings, always stopping after some fixed number of steps, s, no matter what is on the tape. If, 
on the other hand, M ∉ Constant_Time, then there are three cases we must consider.  
(1) M, starting on some finite C, loops within some finite set of configurations; or  
(2) M, starting on some finite C, runs forever without repeating any previously visited 
configuration; or  
(3) M halts on all finite configurations, but there is no fixed maximum running time.  
If either of cases (1) or (2) holds, then M is not mortal. For the other case, we need to start with a 
simple notation. Define I to be a set of configurations such that if C ∈ I then M will scan all 
squares of C before it scans a square that is not part of C. Let {q1, q2, …, qm} be the states of M. 
We create a tree as follows. The root is an abstract node without a label. Its children are the m 
nodes labeled with each of the states of M, qi, one node per state. If C0, C1 ∈ I and qj is a 
symbol of C0 and C1, and C1 = αC0 or C1 = C0α , where α is a tape symbol (0 or 1), then C0 is 
the parent of C1 in the subtree whose root is labeled qj. Since C is not in Constant_Time, but 
every finite configuration causes it to halt, at least one of the subtrees must be infinite. Since the 
degree of each node is finite (all but the root have degree at most 2, and the root has degree m),  
König’s Infinity Lemma states that at least one of the trees must have an infinite branch. 
Therefore, there must exist an infinite configuration that causes M to travel an infinite distance 
on the tape. It follows that M is immortal. 
 
Theorem 3 (Hughes and Selkow [10]):  
The set of mortal Turing machines is precisely the same as the set of Constant Running Time 
Turing machines. 
 
Theorem 4 (Hooper [8]; Hughes and Selkow [10]):  
The set of Constant Running Time Turing machines is recursively enumerable, non-recursive. 

5 Valid traces and false traces of Turing computation  

Turing machine computations are often represented by traces. A trace displays successive 
configurations, where configuration i+1 in the trace is the immediate successor of configuration 
i. Such traces typically require separators between configurations, and often have every other 
configuration displayed as the reverse of the actual configuration string. The reason for the 
reversals is that a single step computation (2 successive configurations) can be expressed by a 
context free language. Expressing successive Turing configurations without the reversal requires 
a context sensitive grammar, although other forms of computation such as single letter, single 
premise Post Canonical Systems do not require string reversal (a configuration is just a single 
number in unary notation). 

One form of a valid trace of computation by a Turing machine M is a word 
C1 # C2R $ C3 # C4R  … $ C2k-1 # C2kR $, where k ≥ 1 and Ci  ⇒M  Ci+1, for 1 ≤ i < 2k. 
Here, ⇒M just means derive in M, and CR means C with its characters reversed. An alternative 
notation, and the one primarily used in this paper is  
#C1#C3#…#C2k-1@!C2kR$%!…C4R $%!C2R$%, where k ≥ 1 and Ci  ⇒M  Ci+1, for  
1 ≤ i < 2k.The fact that such traces are even length is not a loss of generality, as has been 
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observed in numerous other papers. Our use of many separators, #, @, ! and $%, may seem to be 
overkill, but their uses will be evident in later proofs. 

A false trace is a word that has the above form, but for which there is some i, 1 ≤ i <2k, for 
which it is not the case that Ci  ⇒M  Ci+1. Realize that a false trace just requires one mistake, 
whereas a valid trace requires all pairs to be correct. It can and has been proven many times that 
valid traces are context sensitive, non-context free languages, but false traces are context free. 
The idea is that one error can be checked for non-deterministically by a PDA, but any correct 
trace with three or more configurations requires a more sophisticated store than is provided by a 
PDA. 

The set of valid traces of constant time Turing machines has the interesting property of having 
a fixed bound on the number of configurations in any trace. That fixed value is the constant time. 
It is this feature that we will use here to prove the undecidability of determining convergent 
properties for shuffle and insertion. In fact, this is what was also used to prove that the Finite 
Power Property for context free languages is undecidable. 

 
Theorem 5 (Hughes and Selkow [9]): 
The problem to determine, for an arbitrary context free language L, if there exist a finite n such 
that Ln = Ln+1 is undecidable, where Lk is a shorthand for L • L • … • L, where concatenation 
is repeated k times. 
 
Proof: 
The purpose for presenting this already-published proof is to provide context for later proofs. 
Part of that context will be seeing how much easier concatenation is than insertion; this 
realization will help the reader to understand the manner chosen for subsequent constructions. 
The notation for traces used here is the first form presented above.  

We will show that for each Turing machine M we can define a language L such that M is in 
Constant_Time iff there exists an n for which Ln = Ln+1. Let M be a Turing machine. Define 
the languages: 

1. L1 = { C1# C2R $ | C1, C2 are configurations }, 
2. L2 = { C1 # C2R $ C3 # C4R  … $ C2k-1 # C2kR $ | where k ≥ 1 and, for some i, 1 ≤ i < 

2k, it is not true that Ci  ⇒M  Ci+1, for 1 ≤ i < 2 }, 
3. L = L1 ∪ L2 ∪ {λ}. 

It is easy to see that L is context free. Moreover, any product of L1 and L2, which contains L2 at 
least once, is L2. For instance, L1 L2 = L2 L1 = L2 L2 = L2.  This property shows that  
(L1 ∪ L2)n = L1

n ∪ L2. Thus, Ln = {λ} ∪ L1 ∪ L1
2 …  ∪ L1

n ∪ L2. Analyzing L1 and L2 we see 
that L1

n ∩ L2 ≠  Ø just in case there is some word C1 # C2R $ C3 # C4R  … $ C2n-1 # C2nR $ in 
L1

n which is not also in L2. But this is so just in case there is some valid trace of length 2n. 
Clearly then, L has the finite power property if and only if M is in Constant_Time. � 
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6 Undecidability of convergence for limited shuffle and insertion of 
regular into context free 

To simplify some of what follows, we will introduce a small amount of new notation. For 
languages L1, L2, define L1 (m)  [ n ]  L2  to be shorthand for the successive n-insertion set  

L1  [ n ]  (L1  [ n ]  (L1  [ n ]  … (L1  [ n ]  L))), 
where this repetition occurs m times. More precisely: 

• L1 (1)  [ n ]  L2 = L1  [ n ]  L2;  
• L1 (k+1)  [ n ]  L2 = L1  [ n ]  (L1 (k)  [ n ]  L2). 

The self insertion L (m)  [ n ]  L is simplified to L (m)  [ n ].  
We also use a little more shorthand, letting  [ 1 ]  be abbreviated  in all contexts. For 

example, L1 (m)  [ 1 ]  L2 is abbreviated L1 (m)  L2 and L (m)  [ 1 ] is abbreviated L (m) . 
 
Theorem 6:  
The problem to decide whether or not ∃m R (m)  L = R (m+1)  L is undecidable for L a 
context free language and R a regular language. 
 
Proof:  
Let M = (Q, {0, 1}, T) be an arbitrary Turing Machine. Here Q is the finite set of states, 0 is the 
blank tape symbol, 1 is the only non-blank tape symbol and T is the set of 4-tuples (the rules in 
Post notation). 
 
Consider the following four languages, two content free (L1 and L2) and two regular (L3 and R) 
over the alphabet Σ = ({#, $, 1 , 0 }  ∪  Q) 
L1 = { #C1#C3# …#C2k-1@%k | k ≥ 1 and each Ci ,  1 ≤  i ≤  k, is a configuration of M } 

L1 is just strings that look like the starts of traces for M up to the @ center split and followed 
by separators for the even configurations of the trace. 

L2 = { #C1#C3# …#C2k-1@X2k%X2k-2% … X2%, where k ≥ 1 and each X2p is either 

empty or of the form !C2pR$ and, for some 1 ≤ i < 2k, it’s false that Ci  ⇒M  Ci+1} 
L2 is similar to a false trace for M, with a twist. We allow some of the even configurations to 
be missing; just including the %’s to stand in for these missing configurations. We still, 
however, require at least one even configuration to be there so we can have a derivation 
error. 

L3 = { w | w has a single @ and either (1) a ! precedes the @; or (2 ) a ! without matching $% 
follows the @ and a series of balanced % (empty) and ! … $% (configuration) segments } 

R = { !CR$ | C is a configuration of M } ∪ {λ} 
 

Context free grammars (L1 and L2) and regular expressions (L3) are shown in Figure 1. We 
use <A_BadPairInM> for a set of rules that generates strings of the form C1 A C2R where it’s 
false that C1  ⇒M  C2; and <A_BadPairInMRev> for a set of rules that generates  

C1#C3 A X4R%!C2R where it’s false that C2  ⇒M  C3; here A is a non-terminal, C1 is a 
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configuration, and X4 is either empty or of the form !C4R$, where C4 is a configuration. These 
latter two languages are known to be context free. 
 
L1:  
 S1  →  # C S1 %  
  | # C @ % 
L2: 
 S2  →  # <Step1Error> %   
  |   # <C> S2’ ! <CReversed> $%  
  |   # <C> S2’ %  
 S2’  →  # <LaterError> % 
  |   # <C> S2’ ! <CReversed> $%  
  |   # <C> S2’ %  
 GotError  →  # <C> A ! <CReversed> $% 
  | # <C> A %   
  |   @ 
 <Step1Error>  →  < GotError_BadPairInM> 
 <LaterError>  →  < GotError_BadPairInM>   
  |   < GotError_BadPairInMRev> 
 
C = ((1(0+1)* + λ) Q (0+1) ((0+1)*1 + λ) 
L3a = (0+1+#+!+$+Q)* ! (0+1+#+!+$+Q)* @ (0+1+%+!+$+Q)* 
L3b = (#C)+ @ ((!CR$ + λ)%)* ((!CR$)+ + ((0+1+Q)* ! (0+1+Q)* (!+%) (0+1+%+!+$+Q)*))) 
L3 = L2a + L3b 
R1 = !CR$ + λ 
 

Figure 1: Grammars and regular expressions 
 

Now, let L = L1 ∪ L2  ∪ L3. 
It’s possible to see that R1 (1)  L = L ∪ T1, where  

T1 = { #C1#C3# …#C2k-1@X2k%X2k-2% … X2%, where k ≥ 1 and each X2p is empty 

except one that is of the form !C2pR$ and either or both of the following hold, C2p-1 ⇒M C2p, 
C2p ⇒M C2p+1, the second choice only being possible if p < k }  

This can be explained by realizing the following: 
R1  L1 results in some string already in L2 or L3, plus strings in T1, if any exist. Inserting an 

element of R1 before the @ produces a string already in L3 (see L3a). Inserting it after the last 
% also produces an element in L3 (see L3b). Placing it before a % gets us an element that is 
either already in L2 (a trace error is produced) or an element in T1.   Note that some exist in 
T1 if there are valid traces of length at least one. 

R1  L2 results in strings already in L2 or L3. The additions to L2 occur when the element of 
R1 is placed in an available slot (between the symbols @% or %%). This improves the 
appearance of the trace (filling in open slots), but does not change a false trace into a valid one 
(the error is still there). If the element of R1 is placed before the @, after the last #, or in the 
middle of a slot that was already taken, the result is a member of L3. 

R1  L3 results in strings already in L3. Elements of L3 cannot be repaired by insertions from 
R1. That is critical to the effectiveness of our construction, and is the reason we used so many 
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separators. For instance, if we had omitted the $, then elements of this new R1 could fix errors, 
e.g., by being inserted into an ill-formed slots that doesn’t have a state symbol, fixing it and 
creating an element of T1. The problem is then that all valid traces could be created in just one 
step, destroying the connection between the number of insertion stages to reach convergence 
and the constant associated with execution time, should this machine M be a member of 
Constant_Time. 
The second insertion must deal with the fact that elements of T1 with one correct 

configuration to the right of the @ can be formed after the first insertion, but then that adds just 
one new type of string, members of T1 with one correct configuration to the right of the @. 
Subsequent insertions have the similar property of adding one more correct configuration, if a 
valid trace of that length exists. Note that our inclusion of λ in R1 lets us carry forward all the 
strings formed in early stages.  
R1 (2)  L = L ∪ { #C1#C3# …#C2k-1@X2k%X2k-2% … X2%, where k ≥ 2 and each X2p 

is empty except two that are of the form C2pR$ and either or both of the following hold,  
C2p-1 ⇒M C2p, C2p ⇒M C2p+1, the second choice only being possible if p < k }  
 
… 
 
R1 (j)  L = L ∪ { #C1#C3# …#C2k-1@X2k%X2k-2% … X2%, where k ≥ j and each X2p 

is empty except j that are of the form !C2pR$ and either or both of the following hold, C2p-1 
⇒M C2p, C2p ⇒M C2p+1, the second choice only being possible if p < k } }   
 
From this we see that if there is a fixed bound, K, on the number of steps for all computations in 
M and hence of the length of any valid trace, then R1 (K)  L = R1 (K+1)  L. If no such 
bound exists then there is always a longer trace than any fixed value, and hence there is no m, 
such that R1 (m)  L = R1 (m+1)  L. � 
 
Theorem 7:  
The problem to decide whether or not ∃n R2  [ n ] L = R2  [ n+1 ] L is undecidable for L a 
context free language and R2 a regular language. 
 
Proof:  

Based on an observation made earlier in this paper, we can recast this to the question  
∃n R2  [ n ] L = R2  [ n+1 ] L. This is possible since A  [ k ] B ⊆ A  [ k+1 ] B. As we noted 
before, this substitution is only acceptable for bounded shuffle closure, not for the more standard 
unbounded shuffle closure operation. However, if there exists an n, as described in the theorem, 
then the unbounded shuffle closure, R2  L, produces no more than R2  [ n ] L = R2  [ n ] L. 

We use the same notation and sets as in Theorem 6, except that  
R2 = (!C$)+, or in terms of trace components,  
R2 = {!C1$!C2$! …$!Ck$ | k ≥ 1 and Ci ,  1 ≤  i ≤  k, is a configuration of M } ∪ {λ}. 
 

With this simple change, we get the results that correspond to those seen before. That is, 
R2  [ 1 ]`L = R1 (1)  L 
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R2  [ 2 ] L = R1 (2)  L  
… 
R2  [  j ] L = R1 (j)  L   

 
The key here is that the value of j in R2  [  j ] L tells us how many segments into which we 

split an element of R2. These splits, when they occur at the right spots (just after each $) in a 
string of the form (!C$)j, act like the j-th stage in the iterated insertion of Theorem 6. When the 
splits are made in the wrong places, or the word chosen from R2 does not have precisely j 
configuration segments, we get garbage words that are already in L3.  

From this we see that if there is a fixed bound, K, on the number of steps for all computations 
in M and hence of the length of any valid trace, then R2  [ K ]  L = R2  [ K+1 ]  L. If no such 
bound exists then there is always a longer trace than any fixed value, and hence there is no m, 
such that R2  [ m ]  L = R2  [ m+1 ]  L. � 

7 Undecidability of convergence for limited self shuffle and self 
insertion of context free 

Theorem 8:  
The problem to decide whether or not ∃m L (m)  = L (m+1)  is undecidable for L a context 
free language. 
 
Proof:  

We use the same notation and sets as in Theorem 6, except that  
L  = L1 ∪ L2  ∪ L3 ∪ L4 ∪ L5  ∪ R1, where L4 and L5 are the regular sets 
L4 = {@,#,!,$,0,1} ∪ Q)* @ {@,#,!,$,0,1} ∪ Q)* @ {@,#,!,$,0,1} ∪ Q)*  
 = { w | w is over ({@,#,!,$,0,1} ∪ Q) and  has at least two occurrences of the symbol @ } and  
L5 = ! ({!,$,0,1} ∪ Q)* ! ({!,$,0,1} ∪ Q)* 

= { w | w is over ({!,$,0,1} ∪ Q), starts with !, and has two !’s } 
 

The only new interactions here over Theorem 6 are  
L1  L results in L1 plus strings already in L4 
L2  L results in L2 plus strings already in L4 
L3  L results in L3 plus strings already in L4 
L4  L results in strings already in L4 
L5  L results in L5 plus strings already in L3 
R1  R1 results in R1 plus strings already in L5 
 

From this we see that if there is a fixed bound, K, on the number of steps for all computations 
in M and hence of the length of any valid trace, then L (K)  = L (K+1) . If no such bound 
exists then there is always a longer trace than any fixed value, and hence there is no m, such that  
L (m)  = L (m+1) . � 
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Theorem 9:  
The problem to decide whether or not ∃n L  [ n ] L = L  [ n+1 ] L is undecidable for L a 
context free language. 
 
Proof:  

Again, based on an observation made earlier in this paper, we can recast this to the question  
∃n L  [ n ] = L  [ n+1 ]. Details of our reasoning can be found in the start of Theorem 7. 

We use the same notation and sets as in Theorem 7, except that  
L  = L1 ∪ L2  ∪ L3 ∪ L4 ∪ L6  ∪ R2, where L6 is the regular set 
L6 = ! ({!,$,0,1} ∪ Q)* ({!,0,1} ∪ Q) ! {!,$,0,1} ∪ Q)* + !!({!,$,0,1} ∪ Q)* 
 = { w | w is over ({!,$,0,1}∪Q), starts with !, and has a later ! not immediately preceded by $} 
 

The only new interactions here over Theorem 7 are  
L1  [ k ] L results in L1 plus strings already in L4 
L2  [ k ] L results in L2 plus strings already in L4 
L3  [ k ] L results in L3 plus strings already in L4 
L4  [ k ] L results in strings already in L4 
L6  [ k ] L results in L6 plus strings already in L3 
R2  [ k ] R2 results in R2 plus strings already in L6 
 

From this we see that if there is a fixed bound, K, on the number of steps for all computations 
in M and hence of the length of any valid trace, then L  [ k ] = L ►  [ k+1 ]. If no such bound 
exists then there is always a longer trace than any fixed value, and hence there is no m, such that  
L  [ m ] = L ►  [ m+1 ]. 

8 Conclusions and future avenues of investigation 

We have shown the undecidability of a number of problems concerning the interaction of 
regular and context free languages under insertion and bounded shuffle, and the interaction of 
context free languages under self insertion and self bounded shuffle. All the problems addressed 
here are in some way connected to finite convergence, whether based on the number of iterations 
of a single insert or the degree of an insertion (the number of splits to a string in a single bounded 
shuffle). 

While the application of these results is not addressed here, we believe that they are 
significant and important to the areas of concurrency, molecular computing, dynamical systems 
and evolutionary computing. Specifically, the inability to determine fixed finite convergence 
criteria is potentially important to areas where the interaction of a population with its own 
members, or the cross interactions with another population is one of the bases for evolution. A 
simple example of this can be seen by realizing that a generalization of the genetic algorithm 
crossover operation fits the characteristics of Theorem 2, where A ⊗ B = { ux, wv | uv ∈ A and 
wx ∈ B }, since L • L ⊆ L ⊗ L 

Finally, we believe that the proofs shown here, while not terribly complex, can be greatly 
simplified if the starting point were a model other than Turing machines. In particular, we 
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believe that Factor Replacement Systems, a simple form of the single premise, one-letter Post 
canonical systems, are the right starting point [9], [12]. Unfortunately, the constant-time 
execution property for this class of systems remains an open problem. 
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