
The Denotational Semantics of View-Centric Reasoning

Marc L. Smith
Department of Computer Science, Colby College, Waterville, ME 04901-8858, USA

Charles E. Hughes
School of EE and CS, University of Central Florida, Orlando, FL 32816-2362, USA

Kyle W. Burke
Department of Computer Science, Colby College, Waterville, ME 04901-8858, USA

June 4, 2003

Abstract

Both Lawrence’s HCSP [3] and Smith, et al’s VCR [6] (an earlier version appears in [5])
extend CSP [1] with representations of truly concurrent events. Previously, VCR was described
using an operational semantics, while the semantics of HCSP’s Acceptances model, like those
of the predominant CSP models described by Roscoe [4] (e.g., Traces, Failures / Divergences),
are denotational. We now present a denotational semantics for VCR and, in so doing, propose
an extension to HCSP (and possibly other existing CSP models) to support View-Centric Rea-
soning. This work brings VCR a step closer to being drawn within Hoare and He’s Unifying
Theories of Programming [2] for further comparisons.

1 Introduction

Need to write an introduction.

2 Environmental and Observational Perspectives

Hoare and He present theories of reactive processes in their Unifying Theories of Programming [2].
The notion of environment is elucidated early in this presentation, as environment is essential to
theories of reactive processes, examples of which include CSP and its derivative models. Essentially,
the environment is the medium within which processes compute. Equivalently, the environment is
the medium within which processes may be observed. The behavior of a sequential process may be
sufficiently described by making observations only of its input/output behavior. In contrast, the
behavior of a reactive process may require additional intermediate observations.

1

Attribute Classic CSP HCSP VCR
Perfect observer? Yes Yes Yes
Sequentially interleaved trace? Yes Yes
Trace with true simultaneous events? Yes Yes
Multiple (possibly) imperfect observers? Yes
Multiple views of history? Yes
Distinction between history and views? Yes

Table 1: Taxonomy of attributes for three CSP models

Regarding these observations, Hoare and He borrow insight from modern quantum physics. Namely,
they view the act of observation to be an interaction between a process and one or more observers
in the environment. Furthermore, the roles of observers in the environment may be (and often are)
played by the processes themselves! As one would expect, an interaction between such processes
often affects the behavior of the processes involved.

A process, in its role as observer, may sequentially record the interactions in which it participates.
Recall participation includes the act of observation. Naturally, in an environment of multiple
reactive processes, simultaneous interactions may be observed. Prior to VCR and HCSP, recording
conventions required simultaneous events to be recorded in some sequence, including random. Hoare
and He thus define a trace as “the sequence of interactions recorded up to some given moment in
time.”

In CSP, interactions take the form of communications between processes across channels. Table 1
gives a taxonomy of attributes across CSP, HCSP, and VCR. The table depicts the gradual depar-
ture from perfect observation and a sequentialized interleaving expression of concurrency, toward
imperfect observation and a contextualized interleaving that more closely preserves true concur-
rency. In some sense, the attributes depicted in Table 1 provide a roadmap for the denotational
semantics presented in Section 3.

Briefly, classic CSP has one perfect observer who records one trace of atomic events, possibly
interleaved in cases of unsynchronized simultaneity. HCSP has one perfect observer who records
one trace of atomic or merged events; there is no longer the need for interleaving simultaneously
occurring events. VCR has multiple, possibly imperfect observers. In VCR, two kinds of traces are
distinguished: a history and its corresponding views. The history type of trace is a sequence of
unordered parallel events (event multisets). The view type of trace is a sequence of ordered parallel
events (ROPEs) derived from a given computation’s history.

3 VCR Semantics

Our goal is to describe the views of a trace, but we do so gradually. Along the way we will address
imperfect observation in Section 3.1, and differences in perspective for observing a simultaneously
occurring event in Section 3.2. We shall see, in Section 3.3, that representing views of a trace
requires further modification to HCSP’s already extended notion of a trace. Finally, in Section 3.4,
we relate traces and views to one another for further study.

2

3.1 Imperfect Observation

To account for imperfect observation, there needs to be a way to represent an observer missing (i.e.,
not observing) one or more atomic events that occur in parallel with other atomic events. Since
both VCR and HCSP represent parallel events using multisets, we proceed from this construction.

Let B be a bag, that is, an event multiset. Thus, as a multiset,

B = {| b1, b2, . . . bn |}.

Borrowing the merge operator (�) from HCSP, we could equivalently represent b as a bag, thus

B = b1 � b2 � · · · bn .

We introduce the notion of the pieces() of B as the powerset of B . In this case, the powerset would
be the set of all multiset subsets of B . Thus, let

P = pieces(B) = {p | p ⊆ B}.

The elements of P represent the possibilities of imperfect observation. For all elements p ∈ P , we
could enumerate the elements of p, in a fashion similar to the original B , thus

p = {| p1, p2, . . . pk |},

where 0 ≤ k ≤ n. It is tempting to wish to represent the elements of P as bags, but this possibility
breaks down for those cases where p is either empty or a singleton multiset. The merge operator is
binary, thus requiring two or more atomic events to yield a bag. One way to overcome this problem
is to borrow from CSP’s hiding operator and employ the invisible event, τ . Using τ in conjunction
with �, we can represent both empty and singleton bags. Thus, we can represent p as follows:

p =

τ � τ if p = ∅,
τ � p1 if |p|= 1, where p1 ∈ p,
p1 � p2 � · · · pk otherwise, where ∀ 1 ≤ i ≤ k ≤ n.pi ∈ p.

This use of τ is not entirely within the spirit of hiding internal events as defined by CSP, but the
end result is it permits us to continue using the � operator as we continue to define the semantics
of views. It should be noted for completeness that τ is an identity for �, thus

τ � τ ≡ {| |} ≡ ∅,

and
τ � pi ≡ {| pi |}.

3.2 Different Perspectives

In the previous section, neither representation of p, an element of the set of pieces of a bag or
multiset, conveys any information about order. The pieces() function merely accounts for the

3

possibility that an observer need not be perfect. As discussed in Section ??, one of the tenets
of VCR is that the environment of a concurrent computation consists of multiple observers. At
a minimum, each communicating sequential process represents an observer of the computation in
which that process participates.

In VCR and HCSP, CSP’s perfect observer is free to record the trace of a computation unen-
cumbered by the burden, and consequences, of sequentially interleaving simultaneously occurring
events. But the semantics of VCR more closely models the environment by using these parallel
events to generate the many possible perspectives of observers within the environment. VCR thus
has the notion of a ROPE, a randomly ordered parallel event.

Just as a bag B has many possible multisets of pieces, for a given set of pieces p ∈ pieces(B), there
are many possible orderings of the elements of p. The set of possible orderings (perspectives) for
an observer of B can be defined using our definition of pieces(). Thus,

ropes(B) = {〈r1, r2, . . . , rk 〉 | r = {| r1, r2, . . . rk |} ∈ pieces(B) ∧ k =|r|}.

The careful reader might be bothered by several points in this definition of ropes(). First, the set
of orderings is a set of traces! But this is only natural, since an ordering implies some sort of list,
and it so happens that a trace is nothing more than a list of observable events. This foreshadows
the recursive nature of one possible definition of a view presented in Section 3.3.

The next points of concern with this definition of ropes() have to do with whether the given
definition really includes all possible orderings of all possible subsets of bag B? There are two
levels of event generation — one explicit, the other implicit — defined by the pieces() function. The
explicit level determines the size of the subset, k , and specifically which k events are chosen from B .
The implicit level concerns the unordered nature of multisets. For example, if {| a, b |} ∈ pieces(B),
then it is also true that {| b, a |} ∈ pieces(B). Thus, every permutation of any trace found within
ropes(B) will also be an element of ropes(B).

In keeping with the spirit of HCSP’s � operator, we introduce an appropriately decorated ordered
merge operator,

→� , which we use to define an alternative expression for VCR’s ROPEs. Thus,

〈r1, r2, . . . , rk 〉 ≡ r1
→� r2

→� · · · rk .

Now that we have given the definition for a ROPE, which is nothing more than a partially ordered
bag or multiset, we may proceed to Section 3.3, where we construct a new kind of trace out of
ROPEs.

3.3 Views of a Trace

CSP denotes a trace as ”a sequence of symbols, separated by commas and enclosed in angular
brackets.” [1]. The meaning of this representation of a trace is that of a sequentialized, recorded
history of the observable events of a computation. By introducing the � operator, HCSP extends
the meaning of a trace to include the possibility of recording either individual or merged events

4

in the trace. Similarly, VCR defines a trace as a list of event multisets. Notice the distinction
between the HCSP and VCR definitions of trace: VCR permits only event multisets in its traces,
while HCSP permits a mix of individual and merged events. For the purposes of defining views of
a trace, a trace must contain only merged events — bags. Fortunately, we have already seen that
a singleton multiset may be represented with the � operator and its identity, τ . We are now ready
to proceed.

Suppose for some composition of process, P , that trace tr ∈ traces(P). Further suppose that tr is
a sequence of bags, thus

tr = 〈b1, b2, . . . bn〉.

Then we could define views(tr) as follows:

views(tr) = views(〈b1, b2, . . . bn〉) = {〈r1, r2, . . . rn〉 | ri ∈ ropes(bi)∀ 1 ≤ i ≤ n}.

The definition of views() falls out rather nicely at this point. This just specifies that the set of all
views of a trace tr consists of views that are formed using a ROPE of each bag in tr .

If we dig a little deeper into the appearance of these views, there are two possible representations:
a list of lists and a list of ordered bags. Both representations have benefits. The list of lists
representation could be flattened, resulting in traces the original CSP observer could have recorded.
Furthermore, the recursive nature of the list of lists form is elegant and appealing, obviating the
need for a merge operator, and supporting a hierarchical, rather than flat, environment of observers.
These authors believe this last point has implications for reasoning about composition. The list of
ordered bags representation provides a convenient mapping to HCSP, and warrants further study
in the context of the unifying theories.

3.4 Views of All Traces

One of the tenets of VCR is the ability to distinguish a computation’s history (trace) from its views,
while relating instances of both notions to each other. To relate an instance of a computation’s
history to all its views, we introduce the set of TraceViews() of some concurrent process, P . Thus,

TraceV iews(P) = {〈tr, vw〉 | tr ∈ traces(P) ∧ vw ∈ views(tr)}.

This says that TraceV iews() is a set of trace/view pairs. In particular, it is the set of all possible
traces, and corresponding views of each possible trace, of some process P .

This is a very large set. It represents the cross product between every possible computation of
process P , and every possible (including imperfect) view of every possible computation of P . From
this set one could project just those elements that are the trace/view pairs of a single computation.
Recall that knowing all possible views of a computation is not sufficient to unambiguously determine
a computation’s true history. For further discussion on this topic, see Smith et al. [6].

5

4 Conclusion

We presented a denotational semantics for View-Centric Reasoning within the framework of HCSP,
while preserving a dual representation that links VCR to its original operational semantics. Both
representations of views – as a list of ordered bags using the new

→� operator, and as a list of lists
(ROPEs) – should prove useful in different ways. The TraceV iews() set encapsulates the entire
denotational semantics of VCR, and is the starting point for attempting to draw VCR within the
Unifying Theories of programming. This will provide the necessary framework to compare VCR to
the other CSP models.

5 Future Work

We must investigate whether the TraceV iews() set could be incorporated into the other CSP
models. For example, the CSP traces model, T , consists of a set of traces for a process, in addition
to a set of axioms, closure properties, etc. Replacing the set of traces() with TraceV iews() would
require further revision, verification, and proofs. Similarly for the failures / divergences model, N ,
the stable failures model, F , the infinite traces / divergences model, I, the failures / divergences
/ infinite traces model, U , and the Acceptances model in HCSP. Of course, the obvious model to
attempt first would be HCSP, since it already supports the notion of true parallel events.

6 Acknowledgements

Rebecca J. Parsons, of ThoughtWorks, Inc., Chicage, was one of my advisors during the develop-
ment the VCR model. Her guidance and patience helped lead to VCR’s original expression as a
parameterized operational semantics. Professor Jim Woodcock, of the University of Kent, provided
valuable feedback for our paper last year [5], as well the roadmap we are now following for VCR.

References

[1] C. Hoare. Communicating Sequential Processes. Prentice Hall International Series in Computer
Science. Prentice-Hall International, UK, Ltd., UK, 1985.

[2] C. Hoare and J. He. Unifying Theories of Programming. Prentice Hall Series in Computer
Science. Prentice Hall Europe, 1998.

[3] A. E. Lawrence. Hcsp: Imperative state and true concurrency. In J. S. Pascoe, P. H. Welch, R. J.
Loader, and V. S. Sunderam, editors, Communicating Process Architectures – 2002, Concurrent
Systems Engineering, pages 39–55, Amsterdam, 2002. IOS Press.

[4] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall International Series in
Computer Science. Prentice Hall Europe, 1998.

6

[5] M. L. Smith, R. J. Parsons, and C. E. Hughes. View-centric reasoning for linda and tuple space
computation. In J. S. Pascoe, P. H. Welch, R. J. Loader, and V. S. Sunderam, editors, Com-
municating Process Architectures 2002, volume 60 of Concurrent Systems Engineering Series,
pages 223–254, Amsterdam, 2002. IOS Press.

[6] M. L. Smith, R. J. Parsons, and C. E. Hughes. View-centric reasoning for linda and tuple space
computation. IEE Proceedings–Software, 150(2):71–84, apr 2003.

7

