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Abstract

The class of all natural images is an extremely small fraction of
all possible images. Some of the structure of natural images can
be modeled statistically, revealing striking regularities. Moreover,
the human visual system appears to be optimized to view natural
images. Images that do not behave statistically as natural images
are harder for the human visual system to interpret. This paper re-
views second order image statistics as well as their implications for
computer graphics. We show that these statistics are predominantly
due to geometric modeling, while being largely unaffected by the
choice of rendering parameters. As a result, second order image
statistics are useful for modeling applications, which we show in
direct examples (recursive random displacement terrain modeling
and solid texture synthesis). Finally, we present an image recon-
struction filter based on second order image statistics.

1 Introduction

The scenes that we observe in daily life contain structure and con-
tent that is easy for the human visual system to interpret. Natural
images appear to deviate from random images in specific ways to
form a sparse subset of all randomly formed images. The statistics
of natural images have been studied to understand how their prop-
erties influence the human visual system. In this paper we study
how these properties may be applied in computer graphics.

We focus on second order image statistics which are explained
in Sections 2 and 3. We present several practical experiments
which show which aspects of modeling and rendering influence
these statistics in Section 4. We then show in Section 5 how sta-
tistical knowledge of images may be applied in computer graphics.
Examples include image reconstruction, parameter optimization for
creating fractal terrains and Perlin noise. We draw conclusions in
Section 6.

2 Image statistics

Natural image statistics can be characterized by their order. In
particular, first, second and higher order statistics are distin-
guished [van der Schaaf 1998]. We focus on the most remarkable
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and salient natural image statistic that has so far been discovered,
which is that the slope of the power spectrum tends to be close to
negative two. This is a second order statistic. The power spectrum
of an M by M image is computed with [Nikias and Petropulu 1993]:

S(u,v) =
|F(u,v)|2

M2 , (1)

where F is the Fourier transform of the image. By represent-
ing the two-dimensional frequencies u and v in polar coordinates
(u = f cosφ and v = f sinφ ) and averaging over all directions φ
and all images in the ensemble, it is found that on log-log scale
power as function of frequency f lies approximately on a straight
line [Burton and Moorhead 1987; Field 1987; Ruderman and Bialek
1994; Ruderman 1997; van der Schaaf 1998]. This means that spec-
tral power as function of spatial frequency behaves according to a
power law function. Moreover, fitting a line through the data points
yields a slope α of approximately negative two for natural images:

S( f ) ∝ A f α = A f−2−η . (2)

Here, α ≈ −2 is the spectral slope, η is its deviation from −2 and
constant A describes the overall image contrast. This result is true
for ensembles, but does not always hold when applied to individual
images [Langer 2000; Balboa et al. 2001].

Although this spectral slope varies subtly between different stud-
ies [Burton and Moorhead 1987; Tolhurst et al. 1992; Field 1993;
Ruderman and Bialek 1994; Dong and Atick 1995], it appears to be
extremely robust against distortions and transformations and it is
therefore concluded that this spectral behavior is a consequence of
the images themselves, rather than of particular methods of camera
calibration or exact computation of the spectral slope.

However, the precise value of the spectral slope depends some-
what on the type of scenes that make up the ensemble. Most studies
in this field use images of natural objects such as trees and shrubs
because it is argued that the HVS evolved when only natural ob-
jects were present. Some studies show that the spectral slope for
scenes containing man-made objects is slightly different [Torralba
and Oliva 2003]. Even if no manufactured objects are present, the
statistics vary dependent on what is predominantly in the images.
The second order statistics for sky are for example very different
from those of trees.

One way in which this becomes apparent is when the power spec-
tra are not circularly averaged, but when the log average power is
plotted against angle. For natural image ensembles all angles show
more or less straight power spectra, although most of the power
is concentrated in horizontal and vertical angles [Ruderman 1997;
van der Schaaf 1998]. The horizon and the presence of tree-trunks
are said to be factors in this, although this behavior is also likely to
occur in man-made environments.

The power spectrum is related to the auto-correlation function
through the Wiener-Khintchine theorem, which states that the auto-
correlation function and the power spectrum form a Fourier trans-
form pair [Nikias and Petropulu 1993]. Hence, power spectral be-
havior can be equivalently understood in terms of correlations be-
tween pairs of pixel-intensities.

A related image statistic is contrast, normally defined as the stan-
dard deviation of all pixel intensities divided by the mean intensity
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(σ/µ). This measure can either be computed directly from the im-
age data, or through Parceval’s theorem it can be derived from the
power spectrum [van der Schaaf 1998]:

σ2

µ2 = ∑
(u,v)

S(u,v). (3)

This particular contrast computation can be modified to compute
contrast in different frequency bands. Frequency-conscious vari-
ance can then be thresholded, yielding a measure which can detect
blur [Field and Brady 1997]. This is useful as lack of contrast can
also be caused by the absence of sufficient detail in a sharp image.

The above second order statistics are usually collected for lumi-
nance images only, as luminance is believed to carry the greatest
amount of information. However, chromatic channels are shown
to exhibit similar spectral behavior [Párraga et al. 1998], and there-
fore all subsequent qualitative arguments are expected to be true for
color as well.

In this paper we study which aspects of rendering and model-
ing influence second order statistics. We will show that second or-
der statistics are influenced most by the geometry of the scene and
much less by the various aspects of the rendering algorithms em-
ployed. This decoupling of sensitivity to geometry and rendering is
a very fortunate result, since it opens up the possibility of using sec-
ond order statistics for assessing modeling efforts without the need
to pay careful attention to the details of the lighting simulation.

3 Power spectrum computation

For the computation of the spectral slope, we follow the method
in [van der Schaaf 1998]. For images that are larger than 512x512
pixels, a window of this size was cut out of the middle of the image
upon which further processing was applied. Then, the weighted
mean intensity µ was subtracted to avoid leakage from the DC-
component of the image, with µ defined as:

µ =
∑(x,y) L(x,y)w(x,y)

∑(x,y) w(x,y)
. (4)

where w(x,y) a weight factor which is explained below. Next, the
images were pre-filtered to avoid boundary effects. This is accom-
plished by applying a circular Kaiser-Bessel window function (with
parameter α = 2) to the image [Harris 1978]:

w(x,y) =
I0

(

πα
√

1.0− ( x2+y2

(N/2)2 )
)

I0(πα)
: 0 ≤

√

x2 + y2 ≤
N
2

.

Here, I0 is the modified zero-order Bessel function of the first kind
and N is the window size (512 pixels). In addition, this weight
function was normalized by letting:

∑
(x,y)

w(x,y)2 = 1. (5)

This windowing function was chosen for its near-optimal trade-off
between side-lobe level, main-lobe width and computability [Harris
1978]. The resulting images were then Fourier transformed:

F(u,v) = ∑
(x,y)

L(x,y)−µ
µ

w(x,y)e2πi(ux+vy). (6)

Finally, the power spectrum was computed as per equation 1 before
plotting the resulting data points. Although frequencies of up to
256 cycles per image are computed, only the 127 lowest frequencies
were used to estimate the spectral slope. Higher frequencies may

Figure 1: Left: Room scene, modeled to a spatial resolution of 1
mm. Right: Scanned data consisting of over 396.000 polygons.

suffer from aliasing, noise and low modulation transfer [van der
Schaaf 1998]. The estimation of the spectral slope was performed
by fitting a straight line through the logarithm of these data points
as function of the logarithm of 1/ f . This method was chosen over
other slope estimation techniques such as the Hill estimator [Hill
1975] and the scaling method [Crovella and Taqqu 1999] to main-
tain compatibility with [van der Schaaf 1998]. In addition, the num-
ber of data points (127 frequencies) is insufficient for the scaling
method, which requires at least 1,000 data points to yield reliable
estimates.

4 The spectral slope of rendered images

In this section we study how various aspects of modeling and ren-
dering affect the spectral slope of the resulting images. For spe-
cific image statistics to be useful, one would like them to be variant
under only a small subset of these aspects. We will show in the
following that this is indeed the case. Since the power spectrum
is computed on images, in the following section we first address
the issue of image manipulations such as gamma correction, anti-
aliasing and lossy compression. We will show that second order
image statistics are largely invariant under these transformations.

Next, we consider the impact of rendering on the value of the
spectral slope, showing that rendering has a negligible effect on
the power spectrum. Hence we argue that geometric considerations
turn out to have a profound effect, and as such it is determined
that the power spectrum could be used as a modeling tool. The
validity of this assessment is demonstrated in Section 5, where it is
shown that certain applications can directly benefit from measuring
the power spectrum.

Display We empirically evaluate which aspects of image post-
processing affect the spectral slope. Possible artifacts may arise
from lossy compression for file formats such as jpeg, gamma cor-
rection and aliasing. Each of these is discussed in turn, using high
quality renderings created with Radiance [Ward Larson and Shake-
speare 1998], as shown in Figure 1.

The lighting simulation included diffuse inter-reflection and soft
shadows. The images were 512x512 pixels with 64 samples per
pixel, and were subsequently converted to PPM. The following tests
all pertain to these images, which have a measured spectral slope of
α = −2.36 for the room model and α = −2.15 for the head scan.

Lossy compression, as employed by various different file for-
mats, may cause the frequency content of images to change. To see
whether substantial modifications occur, the above PPM image was
converted to JPEG (using different levels of quality and smooth-
ing) using XV. With the exception of smoothing, which destroys
high frequency content, the effect of file conversion on the spectral
slope is generally benign with deviations less than 1%. For differ-
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Room Head
Super-samples α σ α σ

1x1 -2.23 0.15 -2.06 0.10
2x2 -2.32 0.19 -2.12 0.11
4x4 -2.35 0.20 -2.13 0.11
8x8 -2.36 0.20 -2.15 0.11

Table 1: Spectral slope α and standard deviation σ as function of
super-sampling. Slope α changes less than 1% if 16 or more super-
samples are computed per pixel.

ent levels of smoothing, the spectral slope varies linearly with the
amount of smoothing applied during file conversion. Hence, mod-
erate levels of compression do not have an appreciable effect on the
measured spectral slope.

Gamma correction is a non-linear transformation to adapt the
appearance of an image to a particular display device. As such,
the spectral information present in the image may be affected due
to the non-linear nature of the transformation. However, our mea-
surements using the gamma correction option in XV show that the
spectral slope is only weakly dependent on gamma correction value.
The largest deviations occur for extreme gamma correction val-
ues that strongly darken the image. It is therefore concluded that
gamma correction does not constitute a significant factor in the de-
termination of spectral slopes.

Aliasing is yet another factor which may affect the spectral slope
by projecting frequencies above the Nyquist limit to lower frequen-
cies. Despite careful consideration of this issue by using only
the 127 lowest frequencies in the power spectrum computations
(Section 3), the rendering process itself may still cause aliasing at
lower frequencies. Images with different numbers of super-samples
were computed, suppressing aliasing by different amounts. Table 1
shows how the spectral slope depends on the number of super-
samples. To minimize aliasing artifacts affecting the spectral slope,
it appears that at least 16 super-samples per pixel are needed. All
the renderings in this and following section use 64 super-samples,
eliminating aliasing as a possible factor.

Rendering From the previous section it is clear that most of the
distortions regularly applied to synthetic images do not unduly af-
fect our spectral analysis. In this section we answer the question
whether second order statistics apply to lighting simulation or mod-
eling. The scenes from the previous section (Figure 1) were used
for rendering images using different lighting simulations: we com-
pare with and without diffuse inter-reflection as well as with hard
versus soft shadows.

Depending on the nature of the scene rendered, shadows can
make an important contribution to the overall appearance of a scene.
Hence, the accuracy with which shadows are rendered may affect
the statistics of the resulting image. By varying the size of the light
sources and adjusting their emission to maintain constant light lev-
els, the effect of varying soft shadows on second order statistics was
measured. Table 2 shows that for both scenes, shadows do not ap-
pear to be an overly important factor for computing image statistics.

Second, we have assessed the influence of diffuse inter-reflection
on second order statistics. As diffusely reflecting surfaces are un-
likely to produce high spatial frequencies due to their illumination,
we expect an even smaller effect than for the light source tests
above. The largest difference occurs when switching from light-
ing simulations without diffuse inter-reflection to those with diffuse
inter-reflection. This changed the spectral slope by 5.5%.

As adding diffuse inter-reflection to the lighting computations
produced a marked effect, we were wondering whether this is due
to an overall increase in energy in the environment. Ray tracing
allows a constant ambient term to be added to each shading result,

Room Head
Size Energy α σ α σ
1/8 64 -2.35 0.20 -2.13 0.11
1/4 16 -2.35 0.20 -2.13 0.11
1/2 4 -2.35 0.20 -2.13 0.11
1 1 -2.36 0.20 -2.15 0.11
2 1/4 -2.36 0.20 -2.16 0.11
4 1/16 -2.37 0.21 -2.17 0.11

Table 2: Spectral slope α and its standard deviation σ as function
of light source size and energy (both multiplication factors).

which increases image intensities. It was found that this produced
the same effect. Hence, we conclude that absolute energy levels are
more important than the low-frequency distribution associated with
diffuse inter-reflection.

It appears that the particular details of the lighting simulation,
whether it be soft or hard shadows, diffuse inter-reflection etc. do
not significantly influence second order image statistics. Differ-
ences between renderers, such as ray tracing and OpenGL rendering
with Phong shading, also did not prove essential (data not shown).
We therefore conclude that these statistics are invariant to rendering
details. Although second order statistics can not be used to differ-
entiate between lighting simulations, this makes them ideal tools
for assessing quality of modeling. We provide evidence for this
hypothesis in the following section.

5 Sample applications

In this section we will first show that a measure of the power spec-
trum of rendered images can be used for parameter tuning in pro-
cedural modeling. We show this for both fractal terrains and Perlin
turbulence applications. In addition, a user study is presented that
shows that people prefer to look at images with natural statistics
(i.e., with a spectral slope close to −2) when asked which image
out of a set looks most realistic.

As the final sample application, reconstruction filters are re-
examined. Normally, for many graphics applications, images are
assumed to show band-pass behavior. In this paper, we have shown
that natural images are not band-pass limited, but have an amplitude
spectrum of around −1, which is equivalent to a power spectrum of
approximately −2. This insight leads to a different type of image
reconstruction filter, which we derive below. This filter has the de-
sirable property that it preserves the spectral slope during filtering,
which leads to a better reconstruction of images.

Procedural terrains We expect natural image statistics to be
useful in any realistic modeling application that involves parameter
tuning. One such application is procedural terrains where parame-
ters affect each stage of subdivision [Mandelbrot 1983; Peitgen and
Saupe 1988].

We implemented the midpoint subdivision algorithm of Fournier
et al. [Fournier et al. 1982]. That algorithm iteratively adds smaller
and smaller random displacements to smaller and smaller spatial
scales. As the scale decreases by a factor of 2, the magnitude of
displacement decreases by a factor k. Smaller values of k result in
rougher terrain, and larger values result in smoother terrain. Fig-
ure 4 shows twelve terrain models using k = 1.5 to k = 2.6 after
applying 10 iterations. The terrains, each consisting of 524,288 tri-
angles, were rendered in Radiance with diffuse inter-reflection and
an 11 o’clock sky model [Ward Larson and Shakespeare 1998]. The
resulting images have an approximately linear relationship between
spatial frequency and spectral slope. Figure 2 demonstrates this be-
havior, along with the observation that for all values of parameter
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Figure 2: The spectral slope for each iteration of the terrain gen-
eration process and for each of the 12 resulting terrains of Fig-
ure 4. The boundary between black and grey shows which parame-
ters cause a spectral slope of around −1.87.

k, the spectral slope decreases predictably with each iteration of the
algorithm. The relationship between division parameter k and spec-
tral slope shows after 10 iterations a minimum of −1.40 for param-
eter k = 2.1. The value of the spectral slope increases slightly for
rougher terrains, which we believe to be caused by self-shadowing.
However, this effect is small and does not interfere with our results.

If we were to set k automatically to produce an image with statis-
tics tuned to the human visual system, we would use a k which
produces images with spectral slopes near −1.87, because this was
the value found by van der Schaaf on a large ensemble of natural
images [van der Schaaf 1998], and we replicated his spectral slope
computation.

A spectral slope of −1.87 corresponds to a value of k close to
2.2. To evaluate this selection of k we asked 52 people to pick the
most realistic image from Figure 4. The images, rendered at a res-
olution of 10242 pixels, were each printed on a single sheet at a
resolution of 300 dpi, yielding 8.672 cm2 prints. These prints were
then presented to the participants in a randomly ordered pile. We
asked the subjects to select the image that looked most realistic. To
make sure that geographic location did not bias the participants, the
experiment was repeated using participants from both North Amer-
ica and Europe. This latter experiment was conducted using a web
page to show the images. Again, the question asked was to selected
the most realistic image.

The results of both experiments are shown in Figure 3. This his-
togram shows the number of responses obtained for each terrain.
The peaks of the histograms lie close to k = 2.1 and k = 2.2. This
corresponds to a spectral slope of between −1.70 and −1.86. The
selection that our participants made correlates to the selection based
on spectral analysis of the terrain images (which would be k = 2.2).
Additionally, the mean value lies well within one standard devia-
tion of van der Schaaf’s natural image ensemble (α =−1.87±0.43
s.d.) [van der Schaaf 1998], suggesting that people would select im-
ages with “natural” statistics if they were given the choice.

We therefore conclude that this analysis can be successfully used
for parameter selection in fractal terrains. The agreement between
user and algorithmic image selection suggests that this statistical
approach lends itself to wider usage in graphics applications, espe-
cially those applications where computer generated imagery needs
to be evaluated for realism or parameters need to be tuned.
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Figure 3: Responses from 52 participants using prints and 84 par-
ticipants who performed the web based experiment. The histogram
shows both the spectral slope and the division parameter k associ-
ated with the images in Figure 4.

Perlin turbulence A second parameter optimization problem is
encountered when generating Perlin turbulence [Perlin 1985]. The
output of that method is sometimes used directly as texture and in
that case it should look natural. This algorithm takes two param-
eters and varying these will lead to different procedural textures.
Perlin turbulence is the sum of absolute Perlin noise functions that
are scaled in both space and intensity:

turbulence(~x) = ∑
i

noise(ai~x)/bi. (7)

Applying our spectral analysis tool directly to the textures, the in-
fluence of varying these two parameters a and b can be assessed.
This is shown in Figure 5. Conventional wisdom says that the
optimal choice of parameters for Perlin turbulence is around 2.0
for both of them (e.g., [Upstill 1990]). Choosing a texture with
scale invariant properties, i.e. with a spectral slope of around neg-
ative two, would result in a rather different choice of parameters,
as indicated by the boundary between black and grey data points
in this graph. From Figure 5 we deduce that fixing parameter b to
be around 1.2− 1.3 and keeping parameter a within a reasonable
range, such as 1.0− 4.0, yields Perlin noise textures with natural
image statistics. Examples of such parameter selections are given
in Figure 6, as well as a more conventional choice of 2 for both
parameters.

Choosing texture parameters such that the result has a power
spectrum with a slope close to −2 implies that the texture is scale
invariant and will therefore appear natural at all viewing distances.
This is not the case for other textures. To confirm that this is indeed
the case, two Perlin noise textures were generated at a resolution of
40962 pixels using the same parameters as those in Figure 6. First
a window of 5122 pixels was cut out of the middle of each and the
spectral slope was computed for these windows. Then the texture
was halved in size and this process was repeated a number of times,
yielding a sequence of spectral slopes as given in Table 3. The
texture with parameters a = 2.8 and b = 1.1 yielded similar spec-
tral slopes for each image size, indicating scale invariance, while
the other texture was not invariant to scale. This confirms that our
method to assess the naturalness of textures is valid and that a Perlin
noise texture with natural statistics may be more useful than other
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1.5 -1.62 1.6 -1.55 1.7 -1.48 1.8 -1.41 1.9 -1.40 2.0 -1.54

2.1 -1.70 2.2 -1.86 2.3 -2.01 2.4 -2.14 2.5 -2.28 2.6 -2.40

Figure 4: Fractal terrains. The numbers for each image are the division parameter k (left) and the spectral slope of the image (right).
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Figure 5: Spectral slope as function of the parameters to the Per-
lin turbulence function. The boundary between black and grey in-
dicates the range of parameters where a spectral slope of about
−1.87 is obtained.

similarly generated textures.
Finally, it should be noted that Perlin turbulence takes two in-

put parameters, both of which are not directly linked to the image
statistics that they yield. Alternative noise texture synthesis algo-
rithms have exploited power spectral considerations [Lewis 1989;
Heeger and Bergen 1995; De Bonet and Viola 1998], although
never directly in the Fourier domain. Noise images with a given
spectral slope may be constructed by randomizing both the ampli-
tude spectrum A and phase spectrum P. Then the pixels are scaled
by a factor that determines the spectral slope of the resulting im-
age. The assignments for each pixel in the Fourier domain are
as follows: A(x,y) = r1 f−α/2, P(x,y) = r2A(x,y), with r1 and r2
random variables, α the desired spectral slope and f =

√

x2 + y2

the frequency. We experimented with both uniformly distributed
variables and Gaussian distributed random variables (obtained from
uniformly distributed random numbers using the Box-Muller trans-
form [Box and Muller 1958]), leading to practically identical re-
sults. The image is finally generated by taking the inverse Fourier
transform, producing images as shown in Figure 7. These images

1.5 1.0 -1.85 2.2 1.1 -1.89

4.0 1.0 -1.87 2.0 2.0 -3.82

Figure 6: Perlin noise examples. Underneath each image on the left
are its parameters and on the right its associated spectral slope.
The bottom right image has standard parameters of 2.0 and 2.0,
leading to a non-natural image statistic, while the other three yield
more or less natural spectral slopes.

are qualitatively different from Perlin turbulence images with the
same spectral slope, which is due to a different randomization of
the phase spectrum (compare Figures 6 and 7).

Reconstruction Aliasing is one of the fundamental problems in
image synthesis. This topic is covered in great detail in the lit-
erature (see for example [Glassner 1995]), but knowledge about
the statistical nature of the imagery rarely incorporated in the de-
sign of anti-aliasing filters. A notable exception is that for the case
of Gaussian stimulus ensembles signal statistics can be effectively
used to recover an under-sampled signal beyond what is allowed
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2.8/1.1 2.0/2.0
Image size α σ α σ

8192 1.89 0.13 3.18 0.34
4096 1.87 0.14 3.67 0.21
2048 1.88 0.13 3.86 0.15
1024 1.89 0.10 3.84 0.18

512 1.87 0.14 3.82 0.18

Table 3: Spectral slope α and standard deviation σ as function of
image size (effectively viewing distance) - results are given for two
Perlin turbulence textures: with parameters a = 2.8 and b = 1.1
and with parameters a = 2.0 and b = 2.0.

Spectral slope -1.88 Spectral slope -3.82

Figure 7: Noise images produced in the Fourier domain.

by the Nyquist theorem [Ruderman and Bialek 1992]. We leverage
this idea for the case of natural images. Other domain knowledge,
such as the location of edges can also be applied to image recon-
struction [Li and Orchar 2001], but these methods are complicated
relative to the hands-off approach that we present next.

There are two different causes for aliasing in computer graphics:
pre-aliasing and post-aliasing. Pre-aliasing is due to an inadequate
sampling frequency. Let a signal have Fourier transform F( f ). If
it is sampled with rate fs (by applying a regularly spaced sampling
train), the spectrum of the sampled signal will consist of replicas of
F( f ) positioned at frequencies k fs, k = 0,±1,±2, .... If the signal
is band-limited (F( f ) = 0 for f > fmax), it can be completely re-
constructed from its samples if fs > 2 fmax by applying a box filter
in frequency space (equivalent to convolution with a sinc function
in the spatial domain), see also Figure 8 (top).

As most signals in computer graphics are not band-limited, they
can not be perfectly reconstructed by this procedure. On the other
hand, it is known from methods such as ray tracing that adding more
samples per pixel will not visually improve the result beyond a cer-
tain point (see also Table 1). This suggests that although the signals
may not be band-limited in the strict mathematical sense, in prac-
tice they can be treated as having some effective cut-off frequency.
This allows us to restrict our attention to only a few central repli-
cas of the original signal, which is a common simplification used
in anti-aliasing. In fact, aliasing is usually assumed to be caused
mostly by the overlap of the central copy of the signal with its two
closest neighbors and, moreover, attention is restricted to the area
up to and around the Nyquist frequency, fN = ±0.5 fs.

Post-aliasing is due to a poor choice of reconstruction filter. Dif-
ferent models of the underlying signal would suggest different re-
construction filters and deviation of the real signal from the model
can render the suggested filter ineffective. This is for example the
case for a band-limited model where the associated “ideal” sinc
function is hardly ever used. We present a model based on image
statistics, leading to an alternative filtering function.

We want to create a larger image while preserving 1/ f behavior
through an appropriate choice of reconstruction filter may yield vi-

f f

f

0

f

1/f tail1/f tails

0

0

fX fs− fs

fX fs− fs

Figure 8: Optimal filtering for a band-limited signal (top) and a
natural image statistics preserving filtering (bottom). Filter func-
tions are shown by dotted lines. Note that in the second case some
distortions are introduced to the reconstructed spectrum.

sually improved results. To derive such a filter g( f ), in frequency
space the 1/ f statistic should be preserved (Figure 8, bottom):

1
| f |

= g( f )

(

1
| f |

+
n

∑
k=1

1
| f ± k fs|

)

(8)

which means that the result of applying filter g( f ) to the sam-
pled signal should produce a function with 1/ f frequency behavior.
This expression is exact for n → ∞, but as argued above in prac-
tice a good approximation is obtained by keeping only the first few
terms. Given the shape of the power spectrum of natural images,
1/| f ± k fs| is a good general form for the copies in the region we
are interested in (up to and around the Nyquist frequency). Another
reason to approximate g( f ) is that its Fourier transform can not be
expressed in closed form. Note that we use absolute values instead
of the square root of the power spectrum to avoid the use of highly
image-specific phase information. Function g( f ) and its approxi-
mations are illustrated in Figure 9. Details of the functional form
of g( f ), such as the small deviation of the slope f from -1, as well
as the exact number of terms we omit, make only minor differences
in practice. Hence, we approximate g( f ) with a triangle in Fourier
space, leading to a sinc2 function in the spatial domain:

g(x) =
sin2(πx)
(πx)2 (9)

where a single pixel is assumed to have width one. Note that
this result is already normalized to avoid the frequency rippling
effect [Mitchell and Netravali 1988]. In 2D, we follow common
practice and use a direct product g(x)g(y) to perform filtering. Pre-
serving natural image statistics during reconstruction thus leads to
a sinc2(x) filter.

To compare this result with other commonly used filters, images
were reduced in size and then different filters were applied while
magnifying them back to their original size [Mitchell and Netravali
1988]. Four different reconstruction filters are compared in Fig-
ures 10 and 11: box, sinc, sinc2 and the Mitchell filter (with op-
timal parameters) [Mitchell and Netravali 1988]. The sinc2 filter
produces visually superior results to both box and sinc filters and is
comparable in quality with Mitchell’s filter. Note that Mitchell’s fil-
ter involved a significant amount of parameter tuning while our rec-
ommendation is a direct consequence of applying domain knowl-
edge of the spectral behavior of natural images. To ensure that the
perceived quality of the sinc2 filter is not simply due to a possible
increase in power or the non-negative nature of the filter, we also
experimented with other variations of sinc and its powers. All such
attempts produced unsatisfactory results. Adding noise during re-
construction would be an alternative approach to preserving the 1/ f
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Figure 10: Left to right: box, sinc, sinc2 and Mitchell filters with a magnification factor of 4.

Figure 11: Left to right: box, sinc, sinc2 and Mitchell filters with a magnification factor of 8.
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Figure 9: Plot of g( f ) given by Equation 8 with five and seven terms
kept and its approximation by a triangle (solid line). One unit on
the frequency axis corresponds to the sampling frequency. Note that
f = ±0.5 therefore corresponds to the Nyquist frequency.

characteristic of the input signal. However, in our experience this
method also produces inferior results.

The design of reconstruction filters is one of the more funda-
mental problems in computer graphics. Although many different
factors which we do not consider here contribute to this issue (such
as practical implementation problems for infinite sinc-style filters),
our results demonstrate that image statistics can be an important
factor in thinking about the fundamentals of image synthesis pro-
cesses. Finally, we believe that the apparent reduction in aliasing
artifacts as compared with the sinc filter is similar in nature to that
described in [Ruderman and Bialek 1992].

6 Conclusions

Because computer graphics should contain cues appropriate for the
HVS, it is important to understand what kind of images the HVS
expects. We have surveyed the most studied natural image statistic:
the 1/ f 2 power spectrum. This statistic is sensitive to geometry,
while the entire rendering pipeline seems to not significantly af-
fect this statistic. Hence, modeling applications may benefit from
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applying second order statistics, as shown by two of the example
applications. In addition, the theoretical importance of the power
spectrum was demonstrated with reconstruction filters. We envis-
age these statistical tools to be able to provide criteria for a wide
range of graphics applications.

While we have shown that second order statistics can be useful,
it is by no means sufficient for conveying information to the HVS.
While natural spectral slopes are deemed necessary to inject realism
into rendered imagery, higher order statistics which are contained
in the phase spectrum, require further analysis. We recognize that
we have implied average characteristics of ensembles to create or
modify individual images; the relationship between ensemble re-
sults and individual images deserves further study.

In addition, we would like to extend the concept of image statis-
tics to 3-d geometry. This would allow us to perform computations
directly on the geometry without having to render images first. This
would remove the trial-and-error aspect now witnessed in for exam-
ple the parameter optimization algorithm for fractal terrains. Cur-
rently, to establish the optimal parameters to generate a good fractal
terrain, we have to render a sequence of images of different terrains
and select the terrain that produced the best image. With an equiv-
alent 3-d “geometry statistic”, this could be greatly simplified.
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