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Abstract

We present a system for computing plausible global illu-
mination solution for dynamic environments in real time on
programmable graphics processors (GPUs). We designed a
progressive global illumination algorithm to simulate mul-
tiple bounces of light on the surfaces of synthetic scenes.
The entire algorithm runs on ATI’s Radeon 9800 using ver-
tex and fragment shaders, and computes global illumination
solution for reasonably complex scenes with moving objects
and moving lights in realtime.
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Programmable Graphics Hardware.

1 Introduction

Accurate lighting computation is one of the key elements
to realism in rendered images. In the past two decades,
many physically based global illumination algorithms have
been developed for accurately computing the light distri-
bution [Cohen et al. 1993; Shirley 2000; Sillion et al.
1994; Jensen 2001]. These algorithms simulate the propa-
gation of light in a three-dimensional environment and com-
pute the distribution of light to desired accuracy. Unfortu-
nately, the computation times of these algorithms are high.
It is possible to pre-compute the light distribution to render
static scenes in real-time. However, such an approach pro-
duces inaccurate renderings of dynamic scenes where ob-
jects and/or lights may be changing.

The computation power of the programmable graphics
processors (GPU) in commodity graphics hardware is in-
creasing at a much faster rate than that of the CPU. it is
often not possible and not even meaningful to use CPU al-
gorithms for GPU processing. The key to harnessing the
GPU power is to re-engineer the lighting computation al-
gorithms to make better use of their SIMD processing ca-
pability of GPU[Purcell et al. 2002]. Researchers have
proposed such algorithms to compute global illumination at
faster rates[Keller 1998, Ma and McCool 2002]. We present
such a re-engineered solution for computing global illumi-
nation.

Our algorithm takes advantage of the capability of the
GPU for computing accurate global illumination in 3D
scenes and is fast enough so that interactive and immer-
sive applications with desired complexity and realism are
possible. We simulate the transport of light in a synthetic
environment by following the light emitted from the light
source(s) through its multiple bounces on the surfaces of the
scene. Light bouncing off the surfaces is captured by cube-
maps distributed uniformly over the volume of the scene.
Cube-maps are rendered using graphics hardware. Light is
distributed from these cube-maps to the nearby surface po-
sitions by using a simple trilinear interpolation scheme for
the computation of each subsequent bounce. Iterative com-
puting of a small number of bounces gives us a plausible
approximation of global illumination for scenes involving
both moving objects and changing light sources in fractions
of seconds.

Traditionally, cube maps are used for hardware simula-
tion of the reflection of the environment on shiny surfaces
[Blinn et al. 1976]. In recent years, researchers are using
them for reflection of the environment on diffuse and glossy
surfaces [Ramamoorthi and Hanrahan 2001, 2002; Sloan et
al. 2002]. We extend the use of cube maps to global illumi-
nation computation.

Greger et al. [1998] used uniform grid for storage and
interpolation of global illumination. The data structure and
interpolation strategy used in our main algorithm is sim-
ilar. The main difference is that our algorithm uses the
uniform grid data structure for transport and storage of
inter-reflected illumination and computes global illumina-
tion, whereas Greger et al. use the data structure simply
for storage of illumination pre-computed using an off the
shelve global illumination algorithm. In addition, we use
spherical harmonic coefficients for compactly representing
the captured radiance field at the sampled points. Imple-
mentation of our algorithm on programmable GPU provides
us with solutions for reasonably complex scenes in fractions
of seconds. This fast computation allows us to recompute
global illumination for every frame, and thus support dy-
namic lights and the moving object’s effect on the environ-
ment.

Ward’s irradiance cache [Ward 1994] uses sampled



points in the scene for computing and storing scalar irradi-
ance value for reuse by neighboring surface points through
complex interpolation. The sample grid points used in our
algorithm may as well be considered as radiance cache for
reuse by neighboring surface points. The main difference
is: we store the whole incoming radiance field at the grid
points, not a scalar irradiance value. We use spherical har-
monic representation for storing this radiance field. The
spherical harmonic coefficients from the grid points are in-
terpolated using a simple interpolation scheme.

The paper contains two main contributions. (1) We pro-
pose a progressive global illumination computation algo-
rithm suitable for implementation on graphics hardware. (2)
We take advantage of the programmability of the graphics
pipeline to map the entire algorithm to programmable hard-
ware. Mapping the algorithm to ATI’s Radeon-9800 gives
us more than 40 frames per second of interactive computa-
tion of global illumination in reasonably complex dynamic
scenes.

2 Background

The steady-state distribution of light in any scene is de-
scribed by the equationL = Le + TL, whereL is the
global illumination, the quantity of light of our interest,
Le is the light due to emission from light source(s), and
T is the light transport operator. The recursive expansion
of this equation gives rise to a Neuman series of the form
L = Le + TLe + T2Le + T3Le + .... In this equa-
tion TLe represents the first bounce of light after leav-
ing the light source. This term is commonly known as
Ldirect. SubstitutingLdirect for TLe we get the expression
L = Le + Ldirect +

(
TLdirect + T 2Ldirect + ...

)
. The

terms within the paranthesis in the right hand side of the
expression represent the second and higher order bounces
of light and they together make theLindirect. Computation
of Ldirect is straight forward and is easily implemented in
GPUs. Computation ofLindirect is the most expensive step
in any global illumination computation algorithm. In this
paper we propose a GPU based method for computing fast
and plausible approximation to theLindirect and hence to
the global illumination in the scene. We achieve this by
providing: (i) a spatial data structure to capture the light-
ing from the first bounce (and subsequent bounces) of light,
(ii) spherical harmonic representation for capturing direc-
tional characteristics of bounced light, and (iii) spatial in-
terpolation of the captured light for use as position depen-
dentLindirect for hardware rendering. These three steps to-
gether account for one bounce of light and hence compute
one term ofLindirect. Iteration of these steps add subse-
quent terms. Figure 2 shows the results for a diffuse scene
illuminated by a lone spot light. Figure 2(a) shows the ren-
dering of the scene using the results from the first bounce

i.e. Ldirect. Figures 2(d) and 2(e) show the rendering using
additional one and two bounces respectively. Figure 2(b)
and 2(c) show the incremental contribution of these indi-
vidual bounces.
The accuracy of theLindirect computation depends on the
the fineness of the spatial data structure used for capturing
the light and the number of the iterations. It is possible to
choose the resolution of the data structure, and the num-
ber of iterations to suit to the GPU power and available
time budget. The accompanying video shows the real-time
computation in the example scene with moving objects and
moving light using a spatial data structure of4× 4× 4 res-
olution and two iterations of the algorithm.

In Section 3, we describe our algorithm. In Section 4,
we describe the implementation of this algorithm on GPU.
In Section 5, we provide the results of our implementation.
In Section 6, we provide an extension to our basic algorithm
to handle indirect shadow.

3 Algorithm

The characteristic steps of our progressive algorithm are
as follows. Figure 1 illustrates each of these steps.

1. Divide the volume of the 3D scene space into a uni-
form volumetric grid. InitializeLindirect for the scene
surfaces to zero. (see Figure 1a)

2. Render a cube map at each grid point to capture the in-
coming radiance field due to the light reflected off the
surfaces of the scene. Carry out this rendering using
Ldirect and from the current value ofLindirect. (see
Figure 1c)

3. Use spherical harmonic transformation to convert di-
rectional representation of the incoming radiance field
captured in the cube maps into spherical harmonic co-
efficients.

4. For every surface grid point, interpolate the spherical
harmonic coefficients from its neighboring grid points.
The interpolated coefficients approximate the incident
radiance at the surface point. Compute reflected light,
Lout, due to this incident radiance. Replace the previ-
ousLindirect with Lout.

5. Repeat Steps (2) to (4) until the changes inLindirect

are insignificant.

6. Render a view frame fromLdirect, and fromLindirect

computed from step (5). (see Figure 1d)

Interactive rendering of a dynamic scene requires the
computation of all the steps of the algorithm for each ren-
dered frame.



3.1 Rendering Cube Maps

Cube maps (see Figure 1b) are the projections of an en-
vironment on the six faces of the cube with a camera posi-
tioned at the center of the cube and pointed along the cen-
ters of the faces. They capture a discrete representation of
incoming radiance from all directions around their center
point. Current GPUs use multiple and highly optimized
pipelines for this type of rendering.

3.2 Spherical Harmonic Representation of In-
coming Radiance Field

Spherical harmonic functionsY m
l (ω), define an ortho-

normal basis over spherical directions [Arkken 1970] (see
Appendix for the definition of these functions). Using these
basis functions incoming radianceL(ω) can be represented
as a number of coefficientsLm

l , such that Equation 1 is sat-
isfied.

L (ω) =
∑

l

l∑
m=−l

Lm
l Y m

l (ω) (1)

Lm
l =

∫ π

0

∫ 2π

0

L (ω) Y m
l (ω) dω

In Equation 1,l, the index of outer summation, takes values
from 0 and above. The exact upper limit ofl, and hence
the number of coefficients required for accurate representa-
tion of L(ω) depends on the frequency content of the func-
tion. For low frequency functions, the number of such coef-
ficients required is small. Thus, spherical harmonics coeffi-
cients provide a compact representation for such functions.
Reflected radiance function is known to be a mostly low fre-
quency function [Horn 1974]. This is the reason why spher-
ical harmonic coefficients are often used for representing
incident radiance fields [Ramamoorthi and Hanrahan 2001,
2002; Sillion et al. 1991; Sloan et al. 2002; Westin et al.
1992].

We convert the discrete representation of incoming radi-
anceL(ω) captured on 6 faces of a cube map to spherical
harmonic coefficientsLm

l , by computing weighted sums of
the pixel values multiplied byY m

l (ω).

Lm
l ≈

6∑
face=1

size∑
i=1

size∑
j=l

Lface(i, j)Y m
l (ω) A (ω)

A (ω) =
∫

pixelij

dω (2)

In Equation 2,size is the dimension of a cube map face,
Lface(i, j) is a radiance stored in pixel (i,j) of one of the
faces,ω in Y m

l (ω) represents the direction from the center
of the cube to a pixel, andA (ω) is the solid angle occupied
by the pixel on the unit sphere around the center of the cube.

3.3 Computation ofLindirect

Spherical harmonic coefficients of the incoming radiance
field sampled at grid points are tri-linearly interpolated to
any surface points, inside a grid cell to estimate the incident
radiance distributionL(ω) at s. Reflected radiance along
any outgoing directionωo, due to this incoming radiance
distribution is computed using Equation 3. This makes the
Lindirect of our algorithm.

Lindirect (ωo) = TL

=
∫

ωi∈ΩN

L (ω) ρ (ωi, ωo) cos θi dωi

=
∫

ωi∈ΩN

L (ω) ρ̂ (ωi, ωo) dωi

=
∑

l

l∑
m=−l

Lm
l

∫
ωi∈ΩN

Y m
l (ω) ρ̂ (ωi, ωo) dωi

=
∑

l

l∑
m=−l

Lm
l Tm

l (ωo) (3)

In Equation 3, the domain of integrationΩN is the hemi-
sphere around the surface normalN , ωi is the incoming
direction inΩN , ρ (ωi, ωo) is the BRDF (bi-directional re-
flectance distribution function) at the surface points, andρ̂
is ρ cos θi. Tm

l (ωo), the integration term of the right-hand
side of the last equation, represents the coefficient of the
transfer function that transfers the incoming radiance field
at the surface to reflected radiance field. Note that in Equa-
tion 3, ω, the direction for the incoming light field, is nor-
mally defined with respect to a global co-ordinates system,
where asωi, ωo are defined with respect to a co-ordinate
system local to the surface.

In the following part of this section we provide ex-
pressions for the evaluation ofTm

l for radially symmet-
ric BRDFs, such as Lambertian model and Phong model.
Such BRDFs consist of a single symmetric lobe of a fixed
shape, whose orientation depends on a well defined cen-
tral direction,C. For Lambertian model this direction is
the surface normal,N and for Phong lobe this direction
is reflection vectorR of ωo. On reparameterization1 [see
Ramamoorthi and Hanrahan, 2002] these BRDFs become
a 1D function ofθi round this central directionC, where
θi = cos−1 (C · ωi). Thus after reparameterization the
BRDF function becomes independent of the outgoing di-
rection. The spherical harmonic representation of this 1D
function can be written as:

ρ̂ (θi) = ρ̂ (ωi, ωo) =
∑
l′

ρ̂l′Y
0
l′ (ωi) .

1Note that for Lambertian BRDF no reparameterization is required.



where

ρ̂l′ = 2π

π
2∫

θi=0

ρ̂ (θi) Y 0
l′ (ωi) sin θidθi.

Substituting this expression of̂ρ() in the expression for
Tm

l (ωo) we get:

Tm
l = Tm

l (ωo) =
∫

ωi∈ΩC

Y m
l (ω) ρ̂ (ωi, ωo) dωi

=
∑
l′

ρ̂l′

∫
ωi∈ΩC

Y m
l (ω) Y 0

l′ (ωi) dωi.

In this equationΩC is the hemisphere around the central
directionC. Note that because of the independence ofρ̂
to the outgoing direction after reprameterization,Tm

l ’s no
more depend on the outgoing direction in the repameterized
space.
Using the rotational property (to convert from global direc-
tion to local direction) [Ramamoorthi and Hanrahan, 2002]
and the orthogonality of spherical harmonic functions the
expression forTm

l simplifies to:

Tm
l =

√
4π

2l + 1
ρ̂l Y m

l (ωC) , (4)

whereωC is the unit direction alongC.

For reparameterized Phong BRDFs

ρ̂(θi) = ks
(n + 1)

2π
(cos θi)

n

wheren is the shininess andks is the specular reflection
constant with value between 0 and 1, and thus

ρ̂l = (n + 1)ks

∫ π/2

0

(cos θi)
n

Y 0
l (θi) sin θi dθi

= ks

√
2l + 1

4π

{
(n+1)(n−1)(n−3)...(n−l+2)

(n+l+1)(n+l−1)...(n+2) odd l
n(n−2)...(n−l+2)

(n+l+1)(n+l−1)...(n+3) even l
(5)

The coefficientsρ̂l fall off as a Gaussian with width of
order

√
n. In other words, for specular surfaces with larger

n values, we will get a better approximation of the function
with a value proportional to

√
n as the limit forl.

For Lambertian BRDFs,

ρ̂(θi) =
kd

π
cos θi

wherekd is the diffuse reflection constant and has a value
between 0 and 1, and thus

ρ̂l = 2kd

∫ π/2

0

Y 0
l (θi) cos θi sin θi dθi

=
kd

π



√
π

2 l = 0√
π
3 l = 1

2π
√

2l+1
4π

(−1)
l
2−1

(l+2)(l−1)
l!

2l( l
2 !)2 l ≥ 2, even

0 l ≥ 2, odd

(6)

Ramamoorthi and Hanrahan [2001] have shown thatl ≤ 2
captures the Lambertian BRDF with over 99% accuracy.

4 Mapping of Our Algorithm to Pro-
grammable Hardware

In this section, we describe the mapping of the algorithm
described in Section 3, to DirectX 9 compatible GPU. A
summary of this implementation is given in the steps below.
A detail description follows in the following subsections.

1. Render cube map at each of thenx × ny × nz grid
points: We usefloating point off-screen render targets
to render and to store the cube maps.

2. ComputeM spherical harmonic coefficients to repre-
sent Radiance captured at the grid points: We compute
the spherical harmonics coefficients in pixel shaders
using multiple passes. These coefficients are stored as
M , 3D texture maps of dimensionnx × ny × nz.

3. ComputeLindirect: We use a pixel shader (i) to
tri-linearly interpolate the radiance coefficientsLm

l ’s
from the 3D textures in hardware based on the 3D tex-
ture co-ordinates of the surface point visible through
the pixel, (ii) to computeTm

l ’s, the central direction
specific coefficients shown in Equation 3, and finally
(iii) to computeLindirect from theTm

l ’s and the inter-
polatedLm

l ’s as per Equation 2.

4. Repeat steps 1-3 for a number of times as the time bud-
get allows.

5. Render image with lighting from global illumina-
tion: We computeLdirect from local light model with
shadow support. We add thisLdirect to Lindirect com-
puted from step 4, and assign the result to the image
pixel.

All the steps of our algorithm are implemented using
fragment/vertex shaders. We have implemented the algo-
rithm in both OpenGL and DirectX9. The executables2

along with the test scene are available for download [Down-
load 2003]. Note that the standard OpenGL library (Version

2The executables have been successfully tested on ATI-Radeon 9700s
and 9800s. The OpenGL version uses vendor specific extensions and hence
will run only on Radeon 9700s, and 9800s. However, the DirectX version
should run on a programmable GPU providing full DirectX 9 functionality
including the support of floating point render targets.



1.4) does not support many of the DirectX9 features. We
have made use of ARB extensions and vendor specific ex-
tensions to make use of such features.

4.1 Initialization

We divide the volume of the 3D scene into a spatially
uniform volumetric grid of dimension:nx×ny ×nz. Then
we createM 3D texture maps of sizenx × ny × nz. These
maps are used to store theM Lm

l values representing the in-
coming light field at the grid points. These texture maps are
initialized with zeroes at the beginning of the computation
for every frame. This amounts to starting the computation
with no reflected light.

For every vertex of the scene we compute a normalized
3D texture co-ordinate that locates the vertex inside the vol-
umetric 3D grid. These co-ordinates are computed in the
vertex shader. The graphics pipeline automatically interpo-
lates them for every surface point visible through the pixels
and makes them available to fragment shader for fetching
and interpolating any information stored in 3D textures.

4.2 Cube Map Generation

We generate cube maps at the grid points of our volu-
metric grid. Generating each cube map comprises six ren-
derings of the scene for a given grid point. Instead of ren-
dering into the framebuffer, we render them to off-screen
render targets. In DirectX these render targets are textures
and in OpenGL they are known aspixel buffersor pbuffers.
These render targets are available in multiple formats. We
set them to 32-bit IEEE floating-point format to carry out
computations directly on the cube maps without any loss of
precision.

4.3 Computing Spherical Harmonic Coefficients

This calculation involves a discrete summation of cube
map pixel values as per Equation 2. We carry out this com-
putation in fragment shader. In conventional CPU program-
ming, this task is easily implemented using an iterative loop
and a running sum. Current generation programmable hard-
ware does not offer looping at the level of the fragment
shader. We resort to a multi pass technique to implement
this step.

In Equation 2, theY m
l (ω)’s and A(ω)’s are the same

for every cube map. We therefore compute them only once
and store the productY m

l (ω) A (ω) in the form of textures.
We store a total of6 ×M textures. Their values are small
fractions (for a32 × 32 texture the values are of the order
of 10−3), and are therefore stored in floating point format.
(For OpenGL implementation we use vendor specific Tex-
ture Float extension e.g. GLATI texturefloat, to store the
texture in 32 bit IEEE floating point format.)

In the first pass, we multiply each pixel in the cube maps
with its pixel specific factor,Y m

l (ω)A (ω). For this pur-
pose, we use the cube map rendered into the render target
as one texture and the pre-computed factor textures as the
other. We use the fragment shader to fetch the correspond-
ing values from the textures, and output their product to a
render target. We apply this pass for each cube map in the
grid.

In the next pass, we sum the products. This step seems to
be an ideal step for making use of themip-mapgeneration
capability of the hardware. Unfortunately, current hardware
does not supportmip-mapcomputation for floating points
textures. Therefore, we perform this step by repeatedly re-
ducing the textures into quarter of their original sizes. We
use arender target, quarter the size of the texture being re-
duced, as a rendering target to render a dummy quadrilateral
with 16 texture coordinates associated with each vertex of
the quadrilateral. These texture co-ordinates represent the
position of sixteen neighboring pixels. The texture coordi-
nates are interpolated at the pixel level. Sixteen neighbor-
ing pixels are fetched from the texture being reduced and
summed up into a single pixel in therender target. This
process is repeated until the texture size reduces to 1. The
resulting value represents one of the spherical harmonic co-
efficientsLm

l . This procedure is carried out for each coeffi-
cient (M times). We assembleM 3D textures of dimension
nx × ny × nz from theM coefficients of the grid points.
(nx, ny, nz represent the scene grid dimension.)

4.4 Computing Lindirect

At the time of rendering cube maps or view frame,
the 3D texture coordinate for the surface point,s, visible
through each pixel is fetched from the pipeline and is used
to index into theM 3D textures holding the coefficients.
The graphics hardware tri-linearly interpolates texture val-
ues (Lm

l ’s) of eight neighboring grid-points nearest tos.
The fragment shader fetches theseM interpolatedLm

l coef-
ficients. It evaluates Equation 4 forM Tm

l coefficients from
theY m

l values computed along the central directionC and
from the surface reflectanceρl’s. For Lambertian surfaceC
is the surface normalN and for Phong specular surfaceC
is the reflected view vectorR. Theρl’s for the surface ma-
terial are pre-computed (using Equation 5 for Phong spec-
ular surfaces and Equation 6 for Lambertian surfaces) and
stored with each surface. At present these coefficients and
other reflectance parameters (kd for Lambertian Surfaces,
ks for Phong surfaces) are passed to the fragment shader
program as program parameters. Finally using Equation
3, the fragment shader evaluatesLindirect from theLm

l ’s
andρl’s. The fragment shader also evaluates the local light
model to getLdirect and assigns the sum ofLindirect and
Ldirect to the rendered pixel as its color.



4.5 Shadow Handling for Ldirect Computation

Note that shadow is not directly supported in the ren-
dering pipeline. We use the shadow mapping technique
[Williams 78, Reeves et al. 87] for handling shadows. We
capture a light map for each light source and store them as
depth textures. The vertex shader computes the light space
coordinates for each vertex along with their eye space co-
ordinates. At the pixel level, the fragment shader fetches
the appropriate z-value (based on light space x and y co-
ordinates) from the depth texture and tests for shadowing.
Shadow maps are captured for every frame to handle the
dynamic nature of the scene.

5 Results

We present the results from the implementation of our
algorithm on a 1.5 GHz Pentium IV using a Radeon-9800
graphics card. We show the images from two scenes: “Hall”
and “Art Gallery”. Both the scenes are illuminated by one
spot light source. Thus the illumination in the scene is due
to the light spot on the floor and inter-reflection of the light
bouncing off the floor. Hall scene has 8000 triangles and
the art-gallery has 80,000 triangles. We used a uniform grid
of dimension 4x4x4, rendered cube maps at a resolution of
16 × 16 for each face, and computed 9 spherical harmonic
coefficients3. We use a simplified version (bounding box
around objects with finer triangles) of the scene during cube
map computation. Most expensive step in a cube map com-
putation is the scene rasterization which must be repeated at
every grid point. Our DirectX implementation takes about
80 msecs for this rasterization. Because of the static na-
ture of our volumetric grid during the iterations, the sur-
face points visible though the pixels of the cube map do not
change from iteration to iteration. Hence we rasterize the
scene for the cube maps and store the surface related infor-
mation in multiple render targets at the begin of computa-
tion for every frame and use it for cube map rendering dur-
ing every iteration. This significantly reduces the computa-
tion time of our algorithm. Further, during the movement of
light source alone and during interactive walk-throughs, the
surface information related to cube-map remain unchanged
as well and hence do not require any re-rasterizaton. Us-
ing this strategy, we get a frame rate of greater than 40 fps
for interactive walk-though with dynamic light in our test
scenes. For dynamic objects, the spatial coherence across

3Ramamoorthi and Hanrahan [2001] have shown that the reflected light
field from a Lambertian surface can be well approximated using only 9
terms its spherical harmonic expansion: 1 term withl = 0, 3 terms with
l = 1, and 5 terms withl = 2. For a good approximation for Phong
specular surfaces the required number of coefficients is proportional to

√
n

wheren is the shininess of the surface. For uniformity we have used 9
coefficients for both Lambertian and Phong surfaces.

the frames is lost and hence the cube map related rasteri-
zation must be carried out at the begin of computation for
every frame. In such cases the frame-rate reduces to about
10 fps. In the attached video, we have captured an interac-
tive session where we move light sources and provide visual
feedback in more than 40 frames per second.

Table 1 shows lists the timing for various steps of the
implementation.

Table 1: Time spent in various steps of the algo-
rithm in milliseconds.

Hall
Scene

Art
Gallery

(8,000 tri-
angles)

(80,000
triangles)

Rasterization for cubemaps 67.3 86.2
Rendering cube maps 0.326 0.513
using raster data
Computation of Coefficients
andLindirect(2 Iterations)

11.1 10.7

Final frame Rendering 0.144 0.8
Overheads 8.33 11.68
Total time for scene 20.9 23.7
with dynamic light source (47.8 fps) (42.49

fps)
Total time for scene 107 110
with dynamic objects (9.3 fps) (9.0 fps)

Figure 2 shows the renderings of Hall scene using our
algorithm. Figure 2a shows a view rendered without any
Lindirect. Figures 2b-c show views rendered withLindirect,
computed from one and two iterations of our algorithm re-
spectively. Figure 2d showsLindirect from the 1st iteration
and Figure 2e shows the incremental contribution of the 2nd

iteration towardsLindirect. Figure 3 shows the comparison
of results from two iterations of our algorithm (in Figure
3a), with the results computed using RADIANCE, a phys-
ically based renderer [Ward-Larson et al. 1998] (in Figure
3b). The comparison of the images in Figures 3a and 3b
shows that the result obtained in two iterations of our algo-
rithm is very close to the accurate solution. Thus we be-
lieve that a good approximation to global illumination can
be achieved in about 100 ms. Table 1 lists the time spent in
various steps of the algorithm. As we mentioned earlier a
significant fraction of this time (86ms) is spent in rasterizing
the scene for cube map computation. Rendering cube maps
using this information and integration accounts for rest per
iteration takes only about 7 ms. Thus increasing the number
of iterations for capturing multiple bounces of light will not
reduce the frame rate significantly.

Figure 4a shows the specular rendering effect in the
“Hall” scene with a specular ball. For this rendering we



changed the surface property of the humanoid character to
specular and the reflectance of the floor to uniform pink.
Note that even with 9 spherical harmonic coefficients we are
able to illustrate the specular behavior of the surfaces. Ac-
curacy will improve with the number of spherical harmonic
coefficients at an additional cost (see 2nd row of Table 1).

Figures 4b-d show the rendering of the “Art Gallery”
scene from three different view points. Note the color
bleeding on the walls and the ceiling due to the reflection
from the yellowish floor.

The same algorithm rendered using a combination of
GPU (for Cube map capture and for final rendering) and
CPU (for spherical harmonic coefficients) takes 2 seconds
for the scenes used in the paper. The main bottleneck in this
implementation is the relatively expensive transfer data be-
tween GPU and CPU. Thus the GPU only implementation
provides us with at least twenty times faster performance.

6 Handling of Indirect Shadow

In our algorithm so far, we did not describe the possi-
ble occlusion during the propagation of light from the grid
points to the surface points. Indiscriminate tri-linear in-
terpolation may introduce error in the computation in the
form of leakage of shadow or light. We handle this problem
by a technique similar to shadow mapping. At cube map
rendering time, we capture the depth values of the surface
points visible to the cube map pixels in a shadow cube map.
For any surface point of interest we query the shadow cube
maps associated with each of the eight neighboring grid
points to find out if the point of interest is visible or invisible
from the grid points. Based on this finding we associate a
weight of 1 or 0 to the grid point. This requires modification
of the simple tri-linear interpolation to weighted tri-linear
interpolation. Current GPU does not support weighted tri-
linear interpolation. In Figure 5 we show the results ob-
tained using a CPU implementation of the weighted inter-
polation on our “Hall” scene. Figures 5a and 5b show a
comparison of the results without and with indirect shadow.
The light leakage on to the arches and pillars in Figure 5a
is suppressed in Figure 5b. Compare the image in Figure
5b to image computed using Radiance shown in Figure 5c.
The lighting distribution on the arches and the pillars are
now comparable. Thus, we find a much better match be-
tween the images. We are working on a method to map this
extension to our hardware implementation.

7 Conclusion and Future work

In this paper we presented a progressive global illumina-
tion algorithm that is designed to take advantage of current
graphics hardware features. We implemented the whole al-

gorithm in a programmable graphics card. Using this imple-
mentation we are able to render dynamic scenes with global
illumination in 10 to 40 frames per second. Our algorithm
does not depend on any additional resources other than pro-
grammable graphics hardware. Thus the speed-up of this
algorithm is simply tied to the speed-up of the hardware.

In this presentation we have restricted our experiment to
radially symmetric BRDFs. However, it should be noted
that our algorithm is equally applicable to scenes with ar-
bitrary non-diffuse surfaces. None of the steps of the algo-
rithm will change to support such surfaces. Very little of the
framework will change. Pre-computed BRDF coefficients
will be stored in a 2D table as textures and will be used dur-
ing theLindirect computation. We are currently extending
our implementation to support general BRDFs in our scene.

The4×4×4 grid dimension used in our implementation
is not sufficient for larger environments. Increasing the spa-
tial grid resolution to handle environments with larger spa-
tial extent will easily outgrow the computational resources
of a single graphics processor. While this problem may be
handled by using a hardware system supporting multiple
graphics cards, a better strategy would be to use a combi-
nation of non-uniform grid spacing particularly along the
depth axis, and to restrict the volume of the grid structure to
a reasonable extent. Currently, we are experimenting with a
dynamic grid structure where grid is laid out in the viewing
frustum volume and the grid moves dynamically with the
view. Another strategy will be to adaptively distribute the
grid points in the scene. This strategy will be closer to the
irradiance cache approach, and is likely to be computation-
ally less complex for larger environments.

There are numerous potential applications of our algo-
rithm, such as virtual reality, interactive lighting design, and
interactive modeling. We are creating a plug-in for 3D Stu-
dio Max to provide a ‘modeling while rendering’ experience
to the designers.
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8 Appendix: Spherical Harmonic Functions

Spherical harmonic functions are harmonic basis func-
tions defined on a sphere. A spherical harmonic function
Y m

l for l ≥ 0 and−l ≤ m ≤ +l is given by the following
equation.

Y m
l (θ, φ) = (−1)m

√
2l + 1

4π

(l −m)!
(l + m)!

Pm
l (cos θ) eimφ (7)

wherePm
l is an associated Legendre polynomial. The nor-

malization of the functions is chosen such that∫ 2π

0

∫ π

0

Y m
l (θ, φ)Y m′

l′ (θ, φ) sin θ dθ dφ = δmm′δll′

Given a unit vectorC whose cartesian components are
(x, y, z) and polar angles are(θ, φ), theY m

l function values
up tol ≤ 2 alongC are given in the following equation both



using the angles and using the cartesian components[Arfken
1970].

Y 0
0 (θ, φ) =

1√
4π

Y 1
1 (θ, φ) = −

√
3
8π

sin θeiφ

Y 0
1 (θ, φ) =

√
3
4π

cos θ

Y −1
1 (θ, φ) =

√
3
8π

sin θe−iφ

Y 2
2 (θ, φ) =

√
5

96π
3 sin2 θe2iφ

Y 1
2 (θ, φ) = −

√
5

24π
3 sin θ cos θeiφ

Y 0
2 (θ, φ) =

√
5
4π

(
3
2

cos2 θ − 1
2

)
Y −1

2 (θ, φ) =

√
5

24π
3 sin θ cos θe−iφ

Y −2
2 (θ, φ) =

√
5

96π
3 sin2 θe−2iφ



               
1(a) Uniform voxel grid    1(b) Sample cubemap          1(c) Spherical Harmonics       1(d) Result 

Figure 1. Salient steps in the algorithm 
 
 

                               
2(a) Ldirect only                           2(b) Ldirect+ Lindirect  one iteration     2(c) Ldirect+ Lindirect two iterations 
 

                                                                                    
                                                                  2(d) Lindirect 1

st iteration                  2(e) Lindirect 2
nd iteration 

Figure 2. Contributions from individual iterations 
 

             
3(a) Results from our algorithm                     3(b) Results from Radiance 

Figure 3. Results from the ’Hall’ scene 



 

               
4(a) Specular ball and character              4(b) Screen shot from the ‘Art Gallery’ 

              
4(c) Screen shot from the ‘Art Gallery’           4(d) Screen shot from the ‘Art Gallery’ 

Figure 4. Some more results 
 

               
               
5(a) Without indirect shadow handling   5(b) With indirect shadow handling        5(c) Results from Radiance      

  
Figure 5. Handling Indirect shadows 


