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ABSTRACT

Augmented reality involves mixing captured video with rendered elements in real-time. For augmented reality
to be effective in training and simulation applications, the computer generated components need to blend in well
with the captured video. Straightforward compositing is not sufficient, sincethe chromatic content of video and
rendered data may be very different such that it is immediately obvious whichparts of the composited image
were rendered and which were captured.

We propose a simple and effective method to color-correct the computer generated imagery. The method relies
on the computation of simple statistics such as mean and variance, but does so inan appropriately chosen color
space - which is key to the effectiveness of our approach. By shifting and scaling the pixel data in the rendered
stream to take on the mean and variance of the captured video stream, the rendered elements blend in very well.

Our implementation currently reads, color-corrects and composites video and rendered streams at a rate of more
than 22 frames per second for a 720x480 pixel format. Without color correction, our implementation generates
around 30 frames per second, indicating that our approach comes at a reasonably small computational cost.
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INTRODUCTION

Modern simulation and training applications fre-
quently employ a mixture of computer generated con-
tent and live video. Thus multiple streams of data
need to be composited in real-time before the re-
sult may be presented to the viewer. This is easily
achieved with the alpha blending operations available
on current graphics hardware. For each frame, parts
of the captured video are replaced by rendered data.
This approach works well, but ignores several issues
which may hamper the effectiveness of training and
simulation applications.

In particular, the rendered data may have a visu-
ally different appearance from the captured video.
Consider a computer generated vehicle being super-
imposed over filmed terrain. This vehicle will only
blend in well with the background if the modeling of
the vehicle is carefully done, the colors of the vehicle
are carefully chosen, and the lighting conditions un-
der which the vehicle is rendered matches the light-
ing conditions of the terrain. The latter requirement
is particularly difficult to maintain.

We present a fast and automatic image analysis and
correction technique which allows the rendered con-
tent to be post-processed such that it blends in well
with the video captured data. The work is directly
applicable to simulation and training applications as
outlined above, as well as several other fields.

For instance in the film industry, a common task
performed by colorists is ensuring that scenes that
follow one another appear without unnatural tran-
sitions. Since scenes may be shot with different
cameras, settings and lighting, frequently this in-
volves chromatic adjustment of film. During post-
processing colorists also perform a creative task,
namely instilling a particular atmosphere or dramatic
effect by adjusting film color.

Similar tasks occur in digital matting applications
where separate video streams are composited to form
a new scene with each frame containing pixels from

multiple sources. Here, usually a foreground is
filmed against a blue screen, and the blue is later
replaced with a separately filmed background. The
filming of foreground and background are usually
separated both in time and location.

In augmented reality, video from different sources
is also composited. However, here one of the sources
is usually computer generated in real time, and live
video is the other source. To ensure that the computer
generated video blends in well with the live video, it
would normally be necessary to carefully match the
light sources found in the real scene with the light
sources used for rendering the computer generated
video stream. In addition the appearance of materi-
als and geometry in the rendered scene (including the
direction of shadows), as well as the rendered content
should be matched for a believable blend of real-time
rendered data and live video.

Matching high level features such as the position
of light sources and other geometry is a complex
task which requires considerable computational com-
plexity in terms of analysis of the live video. While
such an analysis and subsequent matching of 3D ge-
ometry with live video is a worthwhile goal which
may considerably enhance the visual experience of
the presented material, we address the arguably sim-
pler problem of matching the chromatic content in a
hands-off manner. Our solution therefore has appli-
cations in augmented reality, as well as more general
video matting applications, and could be extended to
automatically match subsequent scenes in film.

Our work extends a previous idea which al-
lows the colors of a single photograph to be semi-
automatically matched with the colors of another
photograph (Reinhard et al., 2001). We introduce
two set-and-forget user parameters which allow con-
trol over the amount of blending. Whenever the en-
vironment which is filmed changes considerably, or
if the rendered data changes, these parameters may
need to be readjusted. However, under normal cir-
cumstances the method is robust and parameter ad-
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justment is rarely necessary.
By following the keep-it-simple principle the num-

ber of computations our algorithm requires per frame
is kept low. Further speed-up is afforded by the fact
that the analysis of each frame does not necessarily
involve all pixels in both video and rendered streams.
The chromatic adjustment may be merged with the
compositing step to minimize unnecessary memory
accesses. This leads to a simple, effective and highly
efficient algorithm which runs at interactive rates.

PREVIOUS WORK

While manipulation of color content of images takes
many different forms, we are interested in changing
an image by means of analysis of a second image.
To date only three such algorithms are known. The
first is called Image Analogies and allows many dif-
ferent characteristics of an image to be imposed upon
a second image, including such attributes as color
and brush-strokes (Hertzmann et al., 2001). This ap-
proach is powerful, but perhaps too computationally
expensive for real-time operation.

The second algorithm is statistical in nature and is
called Color Transfer (Reinhard et al., 2001). Here,
a decorrelated color space is used to analyze both ex-
ample and target images - the statistical measures be-
ing mean and variance. The pixels in the target im-
age are shifted and scaled so that this image has the
same mean and variance as the example image. This
method is straightforward to implement and compu-
tationally efficient. It was later extended to allow col-
orization of grey-scale images (Welsh et al., 2002).

A weaknesses of this method is that the composi-
tion of example and target images needs to be similar
to obtain plausible results. An ad-hoc solution is to
allow the user to specify pairs of swatches which will
then guide the color transfer process. While this ex-
tends the use of the method, manual intervention is
not desirable for real-time applications.

The third algorithm improves the color trans-
fer method considerably by considering color
names (Chang et al., 2004). Colors can be classified
according to name, which is remarkably consistent
across languages and cultures. Rather than employ-
ing swatches, each pixel in both example and target
images is categorized into one of eleven color groups.
The color adjustment is then applied such that colors
stay within their category. This produces very plau-
sible results, albeit at the cost of extra computations.
If computation time is not at a premium, we would
advocate the use of this color naming scheme.

However, in this paper we are interested in real-
time color transfer to allow computer generated data

to be blended with video. We therefore opt to use the
original color transfer method. We apply this algo-
rithm in essentially its basic form, but provide simple
extensions to overcome the need for using manually
selected pairs of swatches. We also present exper-
iments which show how many pixels per frame are
required to compute statistics - thus allowing perfor-
mance to be optimized without introducing artifacts
such as flicker between frames. Finally, we employ
a slightly different color space which further reduces
the number of computations.

COLOR TRANSFER

In RGB color space, the values of one channel are
almost completely correlated with the values in the
other two channels. This means that if a large value
for the red channel is found, the probability of also
finding large values in the green and blue channels
is high. Color transfer between images in RGB
color space would therefore constitute a complex 3-
dimensional problem with no obvious solution.

To understand the color opponent space employed
by the human visual system, Ruderman et al con-
verted a set of spectral images of natural scenes to
LMS cone space and applied Principle Components
Analysis (PCA) to this ensemble (Ruderman et al.,
1998). The LMS color space roughly corresponds to
the peak sensitivities of the three cone types found in
the human retina. The letters stand for Long, Medium
and Short wavelengths and may be thought of as red,
green and blue color axes.

The effect of applying PCA to an ensemble of im-
ages, is that the axes are rotated such that the first
channel represents luminance, and the other channels
carry red-green and yellow-blue color opponent in-
formation. Color opponent channels have a different
interpretation than channels in more familiar color
spaces. For example, a value specified for red in RGB
determines how much red is required to mix a given
color. The values usually range from 0, i.e. no red, to
255 indicating maximum red.

In a color opponent channel, values can be both
positive and negative. For instance, in the yellow-
blue color opponent channel a large positive value in-
dicates ’very yellow’, whereas a large negative value
indicates ’very blue’. Values around zero indicate
the absence of yellow and blue, i.e. a neutral grey.
The same is true for the red-green channel. A con-
sequence of this representation that it is impossible
to represent a color that is blue with a tinge of yel-
low. This is in agreement with human visual expe-
rience — humans are incapable of seeing yellowish
blue or greenish red. On the other hand color op-
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ponent spaces predict that we should be able to see
bluish red (purple) or greenish yellow.

Since the PCA algorithm decorrelates the data
through rotation, it is evident that one of the first
steps of the human visual system is to decorrelate
the data. Ruderman et al found that while theoreti-
cally the data is only decorrelated, in practice the data
becomes nearly independent. In addition, by taking
the logarithm the data becomes symmetric and well-
conditioned. The resulting color opponent space is
termedLαβ .

The implications for color transfer are that our
complex 3-dimensional problem may be broken
into three 1-dimensional problems with simple solu-
tions (Reinhard et al., 2001). The color transfer al-
gorithm thus converts example and target images to
LMS cone space. Then the logarithm is taken, fol-
lowed by a rotation to color opponent space. Here,
the mean and variance of all pixels in both images
are computed. This results in three means and three
variances for each of the images. The target image
is then shifted and scaled so that in color opponent
space the data along each of the three axes has the
same mean and variance as the example image. The
result is then converted back to RGB space.

ALGORITHM

For real-time operation, we would like to apply the
color transfer algorithm on a frame-by-frame basis.
For this approach to be successful, it is paramount
that the number of computations executed for each
frame be minimized.

To reduce the number of computations, we are in-
terested to know if executing the color transfer al-
gorithm in logarithmic space is absolutely necessary.
Our results show that this is not the case. We can
therefore omit taking the logarithm for each pixel.

Since the conversion from RGB color space to
LMS cone space is achieved by multiplying each
RGB-triplet by a 3x3 matrix, and the conversion be-
tween LMS andLαβ color opponent space is also
achieved by matrix multiplication, these two color
space conversions may be merged into a single matrix
multiplication which needs to be executed for each
pixel in the source and target frames. This optimiza-
tion saves 3 logarithms and a 3x3 matrix multiplica-
tion for each pixel in both images.

By omitting the logarithm, we effectively no longer
useLαβ space, but convert to an approximation of
the CIE Lab color space instead (Wyszecki and Stiles,
1982):

[

L
α
β

]

=

[

0.3475 0.8231 0.5559
0.2162 0.4316 −0.6411
0.1304 −0.1033 −0.0269

] [

R
G
B

]

(1)

The inverse transform to go from Lab to RGB is given
here for convenience:

[

R
G
B

]

=

[

0.5773 0.2621 5.6947
0.5774 0.6072 −2.5444
0.5832 −1.0627 0.2073

] [

L
α
β

]

(2)

Within Lαβ space we compute the mean and stan-
dard deviations in each of the L,α andβ channels for
both the rendered image and the captured frame. A
further opportunity to reduce the number of computa-
tions may be exploited by computing these statistics
on only a subset of all pixels. We may for instance
choose to compute these statistics on only every tenth
pixel, thus reducing the number of computations ten-
fold for this step.

For the rendered data we also omit any pixels
which are transparent since we will substitute video
data for these pixels during the compositing step.

As in the original color transfer algorithm. the
means and variances are used to adjust the pixels of
the rendered frame. However, we have found that if
we shift and scale the pixel data such that the means
and variances are precisely the same as the mean of
the video capture, the results are too dramatic. For in-
stance, if the video depicts a red brick wall, adjusting
the rendered data to be displayed in front of the wall
to have the same means and variances will result in
any data to become fully brick-colored. Rather than
rely on manually specified swatches to combat this
problem, we introduce two user parameters to allow
the adjustment to be incomplete. These parameters
do not usually need to be adjusted for each frame, but
are of the set-and-forget variety.

The adjustment of rendered pixels according to the
means and variances of the video data as well as the
newly introduced user parameters is then given by:

Ltarget = sL
(

Ltarget− L̄target
)

+ L̄target+dL (3)

αtarget = sα
(

αtarget− ᾱtarget
)

+ ᾱtarget+dα (4)

βtarget = sβ
(

βtarget− β̄target
)

+ β̄target+dβ (5)

In these equations,̄Ltarget is the mean luminance of
the rendered frame andsL anddL are two constants
that are computed once for every frame. Theα and
β channels are computed similarly.

The scale factorssL, sα and sβ adjust each pixel
such that the variance of the rendered frame becomes
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equal to the variance of the captured video (the ex-
ample frame) and includes user parameters which
allows the adjustment to be incomplete:

sL = 1− s+ s
σL,example

σL,target
(6)

sα = 1− s+ s
σα,example

σα,target
(7)

sβ = 1− s+ s
σβ ,example

σβ ,target
(8)

Here, the variance observed in a particular channel
for example and target images is indicated withσ .
The offsetsdL, dα anddβ steer the mean of the target
image towards the mean of the example image to the
extent dictated by user parameterd:

dL = d
(

L̄example− L̄target
)

(9)

dα = d
(

ᾱexample− ᾱtarget
)

(10)

dβ = d
(

β̄example− β̄target
)

(11)

We combine this adjustment with the actual com-
positing step so that a pixel is either copied from the
video capture, or it is a rendered pixel which is ad-
justed by the above formula. Once each pixel has
either been copied or adjusted, the resulting image is
converted back to RGB space for display.

VISUAL QUALITY

The visual quality depends on the number of pixels
in each frame that is used in the computation of the
means and variances, as well as the user parameters
s andd. We demonstrate the behavior of our algo-
rithm by means of a short sequence of captured video
— several frames are shown in Figure 1 — and a
rendered sequence of a rotating multi-colored sphere-
flake, as shown in Figure 2. All frames were created
at a resolution of 720 by 480 pixels and then run-
length encoded into two separate movies. All com-
positing and color correction is then applied to the
two movies without further referring to the original
separate frames, or indeed the 3D geometry.

Simply compositing the results would cause the
color content of the sphereflake to stand out and not
mesh very well with the background (Figure 3). Full
application of our algorithm results in the frames
shown in Figure 4. Here, the algorithm has been too
effective. In particular, the fourth frame which shows
predominantly a brick wall, has caused the sphere-
flake to take on too much red. By adjusting thes user
parameter to a value of 0.4 we obtain the sequence of

frames shown in Figure 5. We believe that this pa-
rameter setting is a reasonable default value between
too much and too little adjustment.

We have also found that partial adjustment of the
user parameterd did not appreciably change the re-
sult. We therefore conclude that this parameter may
be removed to save a small number of computations,
leaving onlys as a user parameter.

With these default settings we combined three dif-
ferent sequences of captured video with three differ-
ent sets of rendered data. From each of the result-
ing nine composited sequences we captured a repre-
sentative frame, and show the results in uncorrected
form in Figure 6 and show the corrected images in
Figure 7. We have found that for our test scenes fur-
ther parameter tuning was unnecessary. We always
sets to 0.4 and obtained plausible results. This does
not mean that this approach will always yield accept-
able results, but we have not found a combination of
video and rendered content that required adjustments
to these parameter settings.

PERFORMANCE

A substantial performance gain was recorded by un-
rolling loops and reordering memory access by hand.
Our sequence rendered at a frame rate of around 13
fps before our low-level code optimization, and im-
proved to around 22 fps after this optimization. A
simple compositing algorithm which does not apply
any color correction, but uses the same procedures
to display the resulting frames, runs under the same
configuration at 30 fps. We therefore conclude that
for color correcting our test sequence incurs a perfor-
mance penalty of around 28%.

This optimization includes a scheme whereby the
current frame is adjusted on the basis of means and
variances computed from the previous frame. In ad-
dition the variances computed during the previous
frame make use of means computed two frames back.
This allows us to simplify and streamline the imple-
mentation such that for each frame only a single pass
over all pixels is required.

The performance of our implementation depends
to some extent on the number of pixels that are ren-
dered in each frame. It is the rendered pixels that are
adjusted, whereas the video pixels are only analyzed.
This dependency is evidenced by plotting the frame-
rate over time, as shown in Figure 8. We see that
the part of the sequence around frame 30 is slower
than the first and last parts. This correlates with the
number of rendered pixels, which we plot in black in
Figure 8. The time per frame closely follows the high
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Figure 8: Frame times and rendered pixels as func-
tion of frame-number.

frequency fluctuations present in the version where
we composite without color correction.

Our experiments with skipping frames for comput-
ing statistics, or omitting pixels from consideration
did not prove to be successful. For instance, the ex-
tra if-statement necessary to determine if the current
frame should be used to recompute means and vari-
ances introduces a branch in the control flow which
causes the floating point units of the CPU to become
partially unfilled. The introduction of this single if-
statement causes the frame-rate to drop by 3 fps.

In addition, the bottleneck in our computations is
the adjustment of pixels, and not the computation of
statistics. Unfortunately, it is not possible to skip
pixel adjustment for any rendered pixels, since this
would introduce flickering. For the purpose of com-
parison, we omitted the computation of new statistics
for each frame, while still correcting rendered pix-
els, albeit with pre-cooked values. The frame-rate in-
creased by around 1.5 fps. Compared with the 3 fps
that an extra if-statement would cost, the overhead
of computing new averages and means in brute-force
manner for every frame is relatively inexpensive.

CONCLUSIONS

A simple and effective method to glean the overall
color scheme of one image, and impose it upon an-
other may be extended for use in real-time mixed-
reality applications. Low level optimizations proved
to be more effective in gaining performance than high
level schemes such as computing statistics for only
a subset of the frames, or computing statistics on
a subset of pixels within each frame. The branch-

ing introduced by such high level optimizations cause
the floating point pipelines to be used less efficiently,
which has a negative impact on performance. The
overall effect is that performance is better with a
brute-force approach than with these optimizations.

We introduced user parameters which make the
transfer of colors between the rendered stream and
the video stream partial, which improves the qual-
ity of the results. For hands-off approaches such
as required in mixed-reality applications, such set-
and-forget user parameters are more effective than
the manual specification of swatches that the original
method employed as a means of user control.

While we demonstrated our algorithm in terms
of a mixed-reality scenario, it is equally applicable
to the work of colorists. Scenes may be adjusted
such that the chromatic content of subsequent scenes
does not exhibit unpleasant jumps. Creative applica-
tions, whereby scenes are colored for a specific mood
or artistic effect, is also catered for. We envisage
that scenes may be recolored according to existing
footage which already has the desired artistic effect.
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Figure 1:Four frames from a sequence of video.

Figure 2:Four frames from a computer generated sequence.

Figure 3:Compositing without color correction.

Figure 4:Full adjustment.

Figure 5:Partial adjustment with a value of s = 0.4.
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Figure 6:Uncorrected frames.

Figure 7:Corrected frames.
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