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High-Dynamic-
Range Still-Image
Encoding in 
JPEG 2000

The raw size of a high-dynamic-range
(HDR) image brings about problems in

storage and transmission. Many bytes are wasted in data
redundancy and perceptually unimportant information.
To address this problem, researchers have proposed
some preliminary algorithms to compress the data, like
RGBE/XYZE, OpenEXR, LogLuv, and so on.1 These algo-
rithms mostly use lossless compression strategies, so they
are not capable of providing significant compression.
However, lossy compression alternatives have started
becoming available, such as Ward and Simmons’2 sub-
band encoding and Mantiuk et al.’s3 perception-motivat-
ed encoding (see the “Related Work” sidebar). 

HDR images can have a dynamic range of more than
four orders of magnitude while conventional 8-bit
images retain only two orders of magnitude of the
dynamic range. This distinction between an HDR image
and a conventional image leads to difficulties in using
most existing image compressors. JPEG 2000 supports
up to 16-bit integer data, so it can already provide image
compression for most HDR images. 

In this article we propose a JPEG 2000-based lossy
image compression scheme for HDR images of all
dynamic ranges. We show how to fit HDR encoding into
a JPEG 2000 encoder to meet the HDR encoding require-
ment. To achieve the goal of minimum error in the log-
arithm domain, we map the logarithm of each pixel value
into integer values and then send the results to a JPEG
2000 encoder. Our approach is basically a wavelet-based
HDR still-image encoding method. 

HDR image compression
requirements

An HDR image records the pho-
tometric measurements of each
pixel and has no restrictions based
on any final display and/or viewing
condition. This display and viewing
independence generally results in a
high dynamic range. Because the
human visual system has a near-log-
arithmic response to a wide dynam-
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The authors use JPEG 2000

to compress high-dynamic-

range still images anywhere

in the spectrum—from very

low bit rate to visually

lossless.

Related Work
Mantiuk et al.1 proposed a hybrid encoding method,

which applies compression to the high-dynamic-range
(HDR) video in two stages, first to the luminance channel
and then to the resulting image in its frequency domain. The
method first quantizes the luminance channel of the HDR
video using a nonlinear function, which distributes the
quantization errors to match the luminance threshold of the
human visual system in changing adaptation levels. It then
sends the result from the first step to an extended discrete
cosine transform (DCT)-based MPEG-4 video encoder for
further data compression in the frequency domain. To
suppress the visual artifacts around the edges of sharp
luminance changes, it supplements the MPEG-4 video
encoder by extracting the edges around sharp luminance
changes from the DCT blocks and compressing them
separately using the run length encoding (RLE) method.

Ward and Simmons describe a lossy HDR image encoding
method.2 Their method separates the HDR image into an 
8-bit low-dynamic-range (LDR) image, and a ratio image.

The LDR image is computed by applying a tone-mapping
operator to the original HDR image. The ratio image is the
ratio of the luminance images of the original and the tone-
mapped version. Both components of the HDR image are
compressed using JPEG separately. The compressed ratio
image is stored in the subband channels of the compressed
LDR image. It’s also a DCT-based encoding scheme. The
method suffers from blocking artifacts of DCT encoding,
and from the loss of chrominance information in the bright
regions of an HDR image.
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ic range of illumination, we aim to achieve a minimum
error in the logarithm domain. This is the main goal we
seek in HDR image encoding. The developers of some
HDR pixel formats, like RGBE/XYZE and LogLuv, also
pursue this same encoding goal.4 The key here is that
the logarithmic response curve is an approximation to
the human visual system’s response to a wide range of
luminances and is now a part of HDR image encoding
applications because of its simplicity and effectiveness.4

A closer but more complex approximation would use a
logarithm function under photopic conditions (bright
light), as well as a nonlogarithmic function under
mesopic (medium light) and scotopic (dim light) con-
ditions. The response curve reported by Stevens and
Stevens5 uses a three-parameter power function to
model perceived brightness to luminance under various

conditions. The display related issues, like gamma cor-
rection, are considered during the display time togeth-
er with tone mapping. Separating HDR image display
from HDR image encoding allows for a device-indepen-
dent appearance across various displays.

JPEG 2000’s compression scheme
The compression scheme in JPEG 20006 first trans-

forms the raw image data into the wavelet domain and
quantizes the wavelet coefficients. The scheme encodes
the quantized coefficients using adaptive arithmetic
coding. The final compressed data stream is formed
through a rate-distortion optimization operation to meet
bit-rate requirements. Figure 1 shows the whole process.

The information loss happens in the two stages col-
ored in blue in Figure 1. The pixel bit depth is first
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Overview of JPEG 2000
Figure A shows the various steps in the JPEG 2000

compression scheme. The inputs to JPEG 2000 encoding
are multicomponent images with up to 16-bit integers
(signed or unsigned) per component. Unsigned integer
components undergo direct current (DC)-level shifting. The
first three components after DC-level shifting might go
through color transformation for color decorrelation. Each
component is then encoded independently.

In the JPEG 2000 single component encoding step, the
component is forward transformed into wavelet coefficients,
which are then quantized for entropy encoding. The result
from entropy encoding is finally truncated to the desired bit
rate in the bitstream formation step.

Depending on the desired mode of compression (lossy or
lossless), JPEG 2000 chooses between two different color
transformation matrices (reversible color transform or

irreversible color transform) in the color transformation step
and between two different wavelets (5/3 or 9/3) in the
forward transformation step.

Two of the steps shown in Figure A might introduce
information loss: quantization and bitstream formation. In
the lossless compression mode, these two steps are
disabled. Although the JPEG 2000 standard specification
leaves the quantization coefficient’s design as an
implementation-specific issue, it recommends two ways to
apply the human visual perception properties associated
with visual frequencies: fixed visual weighting for images
with a fixed viewing condition and visual progressive
weighting for changing viewing conditions (see Annex J.8
of the JPEG 2000 standard6). To meet the desired bit rate,
the bitstream formation step results in information loss due
to bitstream truncation of the original bitstream during
entropy encoding.

JPEG 2000 multiple component encoding

JPEG 2000 single component encoding
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A Steps in the JPEG 2000 compression scheme.
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reduced in the quantization step.7

The table used for quantization is
derived from the knowledge of the
human visual system. The com-
pressed data are then truncated in
the bit-stream formation stage,
where a minimum distortion is
enforced within the bit-rate budget.
For additional information, partic-
ularly information loss in the JPEG
2000 encoding process, see the side-
bar “Overview of JPEG 2000.”

Our HDR image compression approach
Figure 2 shows our overall HDR compression and

decompression scheme. The scheme has two basic com-
ponents: pixel encoding/decoding and image encod-
ing/decoding. The blue blocks in Figure 2 are the steps
we introduce for pixel encoding. The yellow blocks in
Figure 2 are the standard JPEG encoding and decoding
schemes shown in Figure 1 that use our quantization
steps for HDR image lossy compression.

Our scheme transforms the raw HDR image into the
logarithm domain and then uniformly quantizes the
data into n bits using the following equation :

(1)

where

r, g, b are the raw colors represented using three 32-bit
floats in RGB color space; r′, g′, b′ are logarithms of r, g,
b respectively; and are the colors represented
in unsigned integers of n bits. xmin and xmax are the 
minimum and maximum value of each channel in the
logarithm domain. We use floating-point numbers in log-
arithmic transformation, thus we have only trivial, if any,
data loss in this transformation. The time consumed is
acceptable for single HDR image encoding/decoding and
can be improved using a GPU implementation.

The pixel encoding scheme plays an important role
in preserving the color gamut and dynamic range of
original raw HDR images. Our simple encoding scheme
of mapping raw pixel values in three 32-bit floats into
those in three n-bit integers (as Equation 1 shows) keeps
the original color gamut and dynamic range—with the
expense of introducing a coding error in the logarithm
domain. Our method takes a nonnegative RGB color
space whose color gamut covers the most commonly
used colors. This constraint is common with most HDR
images available to the computer graphics community. 

We send the image in unsigned integers resulting
from pixel encoding to the JPEG 2000 encoder for image
compression. We enable the standard color transforma-
tion option available in the JPEG 2000 encoder to take
advantage of color decorrelation (see Annex G of the
JPEG standard7). This transforms the color linearly from
logarithmic RGB space to YCbCr space. The color trans-

form over logarithmic RGB operates in a nonlinear
domain, which leads to luminance and chrominance
mixing to some degree. We thus disable the chromi-
nance subsampling, which depends on luminance and
chrominance separation and is used in low-dynamic-
range (LDR) image encoding. 

Our approach then transforms the YCbCr image data
to the wavelet domain. We quantize each subband b of
the wavelet transformation using a quantization step ∆b
computed by Equation 2:

(2)

where γb is the energy weight for subband b, defined as
the square of the amount of error introduced by a unit
error in the transformed coefficient (see Annex E.2 of
JPEG 20007). γmax is the maximum energy weight of all
subbands. 

This quantization scheme differs from the JPEG 2000
standard recommendation (see Annex J.87). We chose
it to maintain the independence of displaying and view-
ing conditions by removing the perception-related fac-
tor. HDR image formats are scene referred as opposed to
LDR formats, which are image referred.

We then transform the quantized result into bit-
streams through entropy encoding. The rate control
mechanism in JPEG 2000 truncates the bitstream to the
desired bit rate. We implemented the rate control via
rate-distortion optimization, which must satisfy the bit
rate constraint while minimizing the distortion (or cod-
ing error) of the reconstructed image in the logarithm
domain. For more information, see the sidebar “Rate
Control in JPEG 2000” (next page).

For decompression, we first decode the compressed
HDR image data using a JPEG 2000 decoder. Then we
convert the results to raw HDR image data via the
inverse operation of Equation 1:

(3)

where

The parameters xmin and xmax in Equation 3 are the same
as those in Equation 1. 
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Note, we analyze the coding error in detail to show
its sources during the encoding process.

Pixel encoding precision
We leave the parameter n for the user to manually

control the coding error εc arising from the quantization
step. We can express εc through Equation 4:

(4)

To restrict the maximum coding error in the loga-
rithm domain to ε, we must use n, determined using the
following equation:

Thus for a dynamic range of 12 orders of magnitude,
and a value of n equal to 16, the coding error in the log-
arithm domain is 12/(216+1−2), or 0.01 percent. 

Compared to other coding methods, it’s convenient to
convert the coding error in the logarithm domain to a rel-
ative error E using Equation 5. The relative error of some
coding scheme is the ratio of the difference to the small-
er value of two consecutive codes in the coding scheme:

(5)

Error sources
Three operations could introduce error in the encod-

ing process: conversion of a float to an integer, coeffi-
cient quantization, and rate-distortion optimization.

The error in lossless mode is limited only to the float
conversion error:

εlossless = εc

The error in lossy mode, εlossy, is the sum of the pixel
encoding error εc, the coefficient quantization error, εq,
and the bitstream truncation error, εr-d:

εlossy = εc + εq + εr-d

The coefficient quantization, εq, is

where ∆b is the quantization step for subband b, and 
εr-d is defined by Equation 6:

(6)

where is the distortion of code block i after rate-
distortion optimization (see Annex J.10 of JPEG 20007).

Compression results
We implemented our HDR compression scheme as an

extension to the JasPer API (C implementation of JPEG
2000 part 1).8 The maximum n supported by JasPer is
16. Hence, we always use n = 16, and use the rate-distor-
tion (R-D) optimization of JPEG 2000 to automatically
reduce the compressed data to a desired bit rate. It’s pos-
sible that some raw pixel values are zero. This poses a
problem for converting an image into the logarithm
domain. We overcome this problem by replacing those
pixels’ values with the minimum nonzero channel value.

Lossless mode
In Table 1 we show the comparison statistics of our

lossless compression scheme with other existing loss-
less schemes. The dynamic ranges (logarithm to base
10) of the four images are 4.2, 5.9, 3.6, and 4.8, respec-
tively. For all four test HDR images, our compression
scheme performed poorly compared to all others. We
hypothesize that this is because the JPEG 2000 compres-
sion scheme is not designed for lossless compression.

Lossy mode
Our lossy compression scheme provides an efficient

way to compress an HDR image in a low bit rate and still
keep a high compressed image quality. In Table 2 we
compare the results of our compression at various com-
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Rate Control in JPEG 2000
Rate control makes the compressed image meet the

desired bit rate. It assures the highest image quality possible
using the desired number of bytes. 

The wavelet coefficients after quantization are divided
into code blocks Bi, i = 1,2 … , which are coded separately
into independent bitstreams. For code block Bi, its bit-
stream can be truncated into discrete lengths .
The corresponding distortions incurred due to the trunca-
tions are . JPEG 2000 generally uses the mean
squared error or weighted mean squared error as a distortion
metric. The possible discrete lengths and corresponding
distortions are computed and stored during the entropy
coding step for use in the bitstream formation step.

Given the truncation points of the separate bitstreams of
all the code blocks, the overall distortion D in the final
reconstructed image is D = D1 + D2 + …, and the overall

length R of the final bitstream is R = R1 + R2 + … . Under the
constraint that R is no more than the desired bit rate Rmax,
the process of finding an optimal set of truncation points
that minimize D is the rate-distortion optimization issue.
JPEG 2000 adopts the well-known Lagrange multipliers
method1 to solve this constrained optimization issue. The
bitstream formation step is to find the truncation points by
using the temporal truncation and distortion information
from the entropy encoding step and then form a final bit-
stream comprised of the truncated separate bitstreams.

Reference
1. Information Technology, JPEG 2000 Image Coding System—Part 1:

Core Coding System, ISO/IEC 15444-1:2000, Int’l Organization
for Standardization/Int’l Electrotechnical Commission, 2000.
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pression ratios with the compression result using Ward
and Simmons’ and Mantiuk’s compression schemes. We
obtained the experimental data for Mantiuk’s method
from the compressed images provided by its author. We
acquired the data for Ward and Simmons’ method from
the implementation of their method (provided by its
authors), and we ran it using the parameters (“–a 0.67

–b 0.75 –c full”) provided in a demo from the authors.
The data in Table 2 are the results from applying the var-

ious methods to the image in Figure 3. This 512  × 768 pixel
HDR image occupies 1.1 Mbytes in RGBE (RLE, or run
length encoding) and 823 Kbytes in OpenEXR (PIZ, a
wavelet compression) format (for more information, see
http://www.openexr.com/). The timing quoted in this
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Table 1. Storage requirements of different HDR image formats.

Lossless Relative Image 1 Image 2 Image 3 Image 4
Schemes Error (× 10-3) (Mbytes) (Mbytes) (Mbytes) (Mbytes)

Our lossless scheme See notes* 3.3 1.6 1.3 11.6
RGBE (RLE) 10 2.7 1.3 1.1 10.9
LogLuv (32 bits) 3 2.5 1.2 0.7 7.1
OpenEXR (PIZ) 1 2.1 1.3 0.8 7.2
*The relative error of our method depends on the actual dynamic range. For the four images used in this table whose
dynamic ranges are 4.2, 5.9, 3.6, and 4.8, respectively, the relative errors are 0.15 × 10–3, 0.21 × 10–3, 0.13 × 10–3, and 
0.17 × 10–3, respectively.

Table 2. Compression statistics and comparison with Ward and Simmons’ and Mantiuk’s methods.

Visual Difference Compression/ 
Size Root Mean  Predictor Decompression 

Method (Kbytes) Square Error (× 10-3) Times (Seconds)

Our method (rate = 0.01) 23 0.074 96 1.7/0.64
Our method (rate = 0.05) 118 0.022 34 1.7/0.68
Our method (rate = 0.10) 230 0.010 23 1.7/0.70
Ward and Simmons’ 125 0.040 46 1.1/0.58
Mantiuk’s 138 0.032 44 N/A

3 Visual quality comparison: The rate for (a)–(c) is 0.01, 0.05, 0.10, respectively is 23, 118, and 230 Kbytes. (d) Compressed image
using Ward and Simmons’ subband encoding (125 Kbytes). (e) Compressed image using Mantiuk’s perception-based encoding (138
Kbytes). (f) Reference image. (g) Relative positions of background images and the insets in (a)–(f) shown as blue boxes. (h) Compari-
son of HDR images using lossy compression.
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table is from the runtime on an Intel Xeon 1.7G PC with 1
Gbyte of memory and running Windows XP. 

Figure 3 shows the results of the compression. Rate
is a parameter in JPEG 2000, which specifies the ratio
of desired data size to raw data size. The raw data size

is the number of pixels times the number of bytes per
pixel (for example, 6 for n = 16). Figure 3h shows the
square root of the mean square error between the com-
pressed image and the reference image in the logarithm
domain. To have a metric that correlates with subjective
perception, we use Lubin’s visual difference predictor
(VDP)9 and the mean value of the difference map as a
visual fidelity indicator in this article. In the last column
of Table 2, we show the compression and decompres-
sion times in seconds. You can see that our algorithm
consumes a considerable amount of time, but this is not
a problem in encoding a single static HDR image.

The compressed image in Figure 3a shows some blur
artifacts, but the compressed images in Figures 3b and
3c are indistinguishable from the reference image in
Figure 3f. In comparison, Figure 3d shows the compres-
sion result of Ward and Simmons’ subband encoding
scheme,2 and Figure 3e uses Mantiuk’s perception-
based encoding.3 In this image we see visible artifacts
in the brighter areas of the scene. The visual differences
agree with the error-predicted VDP. Thus, keeping the
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4 Lossy compressed results. (a) Compressed image (248 Kbytes; rate = 0.05) of (b) reference image (2,683 Kbytes in RGBE RLE). (c)
Compressed image (108 Kbytes; rate = 0.05) of (d) reference image (1,142 Kbytes in RGBE RLE). (e) Compressed image (154 Kbytes;
rate = 0.01) of (f) reference image (766 Kbytes, rate = 0.05) and (g) reference image in RGBE RLE (8,356 Kbytes).
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visual quality the same, our scheme produces com-
pressed images at a bit rate of about one-fifth of that
achieved using Ward and Simmons’ subband encoding.2

Table 1 shows the performance of our lossless com-
pression scheme with that of the other available meth-
ods. Although compressed images obtained using our
method have the smallest relative error, they are the
bulkiest of the lot. OpenEXR is a clear winner in terms
of compressed image size. However, we must note that
the quoted average compression ratio—which is the
average ratio between raw image size and compressed
image size—for OpenEXR is only 2:1 (see http://www.
openexr.com/) and hence is not at all suitable in appli-
cations requiring aggressive compression performance.
So there is a clear need for a lossy compression scheme.
We show in the following that our lossy scheme excels
by providing the best compression ratio with the least
amount of relative error.

In Table 2, we also compare our lossy compression
with Ward and Simmons’ subband encoding and Man-
tiuk’s perception encoding, investigating the compres-
sion quality in terms of the root mean square error
changing with compressed size, as Figure 3h shows. Our
method has obvious advantages, especially in small
compressed sizes (a low bit rate).

Figure 4 shows the compression results for three other
HDR images. For the image in Figure 4c, our HDR image
encoder compresses the original HDR image (1,116
Kbytes in RGBE format) to 108 Kbytes without introduc-
ing any visually distinguishable differences. In fact, in
all the test HDR images in this figure (Figures 4a, 4c,
and 4f), compression rates greater than or equal to 0.05
produce results that are visually indistinguishable from
the original HDR images (Figures 4b, 4d, and 4g).

Figure 4e shows that our lossy compression performs
quite well for very low bit rate and very high dynamic
range. Visit http://graphics.cs.ucf.edu/hdri/#j2 to view
additional results. 

Conclusions
Our method extends JPEG 2000 to compress HDR

images. It thus acquires other benefits from JPEG 2000,
like scalability, error resilience, and region of interest.
Our wavelet-based approach is superior to any discrete
cosine transform-based one; for example, it does not
exhibit blocking artifacts. In contrast, this artifact issue
is a serious problem for Mantiuk’s and Ward and Sim-
mons’ methods under low bit rates.

Compared to other lossy HDR compression schemes,
our approach can reach the same visual quality at a
much lower bit rate. It enables a minimum coding error
in the logarithm domain with any bit rate budget. For
the HDR image in Figure 3, even a 23-Kbyte image is
enough to achieve a visually good result.

The quantization error that our approach introduces
is limited by the actual dynamic range and the maxi-
mum bit depth of the JPEG 2000 implementation. The
highest precision in the log domain using JasPer will be
R/(216+1 − 2) = R*0.00076 percent, where R is the actu-
al dynamic range. For most natural HDR images, whose
dynamic range covers up to nine orders of magnitude,
the pixel coding error in the logarithm domain is no

more than 0.007 percent, with a corresponding relative
error, according to Equation 5, of 0.03 percent. This is
much less than 0.1 percent, the precision (relative error)
of the half data type (a new 16-bit floating data type first
introduced in Nvidia’s GPU) used in OpenEXR. The rea-
son our pixel encoding can have a higher precision than
OpenEXR, while using the same number of bits, lies in
the fact that we use the actual dynamic range, rather
than the nominal dynamic range of the half type.

The lossless mode has a larger bit rate than OpenEXR,
and even more than JPEG-LS on average.6 But the lossy
mode is superior to others, particularly in low bit rates.
Our approach provides a simple, straightforward, and
efficient lossy HDR encoding. 

Future directions
Eventually, we would like the color transformation to

occur before doing the log transformation. However,
our attempt in doing so has brought about color artifacts
in the dynamic range areas. Currently we aren’t certain
about the reason, but we believe that the issue could be
in using the sRGB to YCbCr transformation, which is
designed mostly for LDR images. As a part of our future
work, we would like to find out the best uncorrelated
color space and the appropriate transformation matrix.

One simple improvement we can make involves opti-
mizing the logarithmic operation by taking advantage of
the format definition of floating-point numbers whose
codes include a mantissa and an exponent.

The choice of using a view-independent quantization
is deliberate in our HDR image encoding scheme. The
reason is that human eyes are not at a fixed adaptation
level when viewing HDR images and hence will warrant
an adaptive quantization for the wavelet coefficients as
a function of pixel position. Although it is not impossi-
ble to address this, such consideration requires careful
research that can build on previous work concerning
adaptive quantization of conventional images.10,11 The
human eye is more sensitive to luminance than chromi-
nance, which is exploited by the JPEG standard by sub-
sampling the chrominance channel. It’s also possible to
encompass this property in the HDR image encoding for
further optimization. In future research, we will study
incorporating the knowledge of visual perception into
our compression scheme. 

It’s possible to extend our approach to compress HDR
video based on MJPEG 2000 (see Part 3 of JPEG 20007).
We can compress HDR video by sending each single
frame to our HDR image compressor. However, the
decoding time of JPEG 2000 is rather slow (0.5 second
for a 512 × 768-pixel HDR image). The GPU implemen-
tation of JPEG 2000 is much faster (see http://www.
cse.cuhk.edu.hk/~ttwong/demo/dwtgpu/dwtgpu.
html), and can be used to develop a real-time HDR video
codec.                ■
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