
Beyond Triangles: Using Ray-Casting to Render Non-Triangle Primitives Directly In Graphics Hardware

We introduce a simple, efficient framework for integrating
arbitrary ray-casted primitives into scenes rendered with more
conventional techniques. This framework will allow for the rapid
introduction of increasingly complex primitive types as graphics
hardware and rendering technology advance.

The overall organization of the framework is shown in Figure 1.
The framework defines an object-oriented interface to the
primitive renderers, a common vertex shader, and an HLSL
function to perform lighting. Each primitive renderer is
responsible for providing a set of C++ functions for managing
primitive-specific GPU resources, as well as a driver function
that performs the actual rendering. The framework also allows
for a primitive renderer to implement an optional interface to
allow for GPU-based object choosing and manipulation.

The most important part of each primitive renderer is a shader
that performs per-pixel geometry processing. Most of these use
ray-casting to determine the depth, and normal of the primitive
point along the ray through current pixel. The renderer’s driver
code provide the information required for these calculations. The
pixel shader outputs depth information, and standard depth
buffering handles occlusion (see Figures 2 and 3). Using the
depth buffer allows seamless integration with the standard
methods for rendering triangles (see example in Figure 4).
Similarly, we use shadow mapping to provide shadow support
that is independent of the nature of the primitives being
rendered.

It’s performance-critical to minimize the number of pixels for
which ray-intersection tests must be performed. Every ray-casted
primitive renderer provides its bounding box information. The
vertex shader does the standard matrix transformation on the
bounding box, and also calculates model-space ray directions at
the vertices. These ray directions are interpolated by the
hardware as texture coordinates, and are used by the renderers’
pixel shaders to perform ray-intersection tests. Object definitions
are either provided as a set of shader constants, or encoded
within the vertex structure. No precomputation is generally
required, so the framework lends itself very well to the highly-
dynamic scenes often found in hardware rendering applications.

We compare the performance of our algorithms with that of a
standard pipeline by rendering sphereflake, a fractally-generated
set of spheres from the Standard Procedural Database (see Table
1). The images for comparison are rendered at a resolution of
600×600, with a 1024×1024 shadow map on a Radeon-9800 (see
Figure 5). The standard-pipeline renderer uses a primitive LOD
scheme where smaller spheres are tessellated into fewer
polygons. This results in some visible artifacts as the viewpoint
approaches the sphere-flake.

REFERENCES
CARR, N. A., HALL, J. D., AND HART, J. C. 2003. The ray engine. In Proceedings of
the EUROGRAPHICS conference on Graphics hardware, 37–46.

PARKER, S., MARTIN, W., SLOAN, P.-P., SHIRLEY, P., SMITS, B., AND HANSEN,
C. 1999. Interactive ray tracing. In Symposium on Interactive 3D Computer Graphics,
119–126.

PURCELL, T. J., BUCK, I., MARK,W. R., AND HANRAHAN, P. 2002. Ray tracing on
programmable graphics hardware. In Proceedings of the SIGGRAPH-02, 703–712.

WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M. 2001. Interactive
rendering with coherent ray tracing. Computer Graphics Forum 20, 3, 153–164.

Walter Mundt, Sumanta Pattanaik, Erik Reinhard University of Central Florida

100%189176253066430
40%28205815507381
3%3736161646829
-9%48533817491
-7%6469888010
-4%909416801

SpeedUpRayTracer
(FPS)

Rasterizer
(FPS)

#
Poly

Spheres

100%189176253066430
40%28205815507381
3%3736161646829
-9%48533817491
-7%6469888010
-4%909416801

SpeedUpRayTracer
(FPS)

Rasterizer
(FPS)

#
Poly

Spheres

Table 1: Performance of our renderer vs. standarad hardware renderer in rendering the snowflake.

Figure 5. Sphereflake rendering: The left inage rendered using standard rasterization. The center and
right images rendered with our hardware ray-caster. The right image uses shadow mapping technique.

Figure 4. Our framework seamlessly integrates standard triangle rendering with ray-casted volume.

ACKNOWLEDGEMENTS

This work was partially supported
by ATI-Research, I-4 Matching
fund and Office of Naval
Research.

