
Real-time Rendering of Dynamic Objects in Dynamic,
Low-frequency Lighting Environments

Ruifeng Xu

University of Central Florida
rxu@cs.ucf.edu

Sumanta N. Pattanaik
University of Central Florida

sumant@cs.ucf.edu

Charles E. Hughes
University of Central Florida

ceh@cs.ucf.edu

1. Abstract
This paper presents a pre-computation based method
for real time global illumination of dynamic objects.
Each frame of animation is rendered using spherical
harmonics lighting basis functions. The pre-computed
radiance transfer (PRT) associated with each object’s
surface is unfolded to a rectangular light map. A
sequence of light maps is compressed using a high
dynamic range video compression technique, and
uncompressed for real-time rendering. During
rendering, we fetch the light map corresponding to
each frame, and compose a light map corresponding
to any arbitrary, low-frequency lighting condition.
The computed surface light map can be applied to the
object using the texture mapping facility of a graphics
pipeline.
The primary contribution of this paper lies in its pre-
computation based real time global illumination
rendering of dynamic objects. Spherical harmonics
light maps (SHLM) are used to represent the pre-
computation results, and the animation can be viewed
from arbitrary viewpoints and in arbitrary low-
frequency environment lighting in real time. The
consequence is an algorithm that is capable of high
quality rendering of animated characters in real-time.

Keywords: Real-Time Techniques, Light Map,
Global Illumination, Mesh Parameterization, High
Dynamic Range Video

1 Introduction
Global illumination (GI) is a key to realism. Despite
over 20 years work [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
GI of static scenes is still expensive. Adding
dynamics (character animation) makes GI even more
challenging, for instance, complicating maintenance
of the rendering acceleration data structure.
The work presented in this paper is inspired by the
pre-computed radiance transfer (PRT) work of [13, 14,
15, 16]. With the incident radiance to each vertex pre-
computed, real-time rendering is achieved by

performing a few spherical harmonics coefficient
multiplication and addition operations for each vertex
[17, 18]. The use of PRT makes the solution of this
previously daunting real-time GI problem possible. A
straightforward extension to dynamic objects is to
pre-compute each animation frame for use in the later
rendering stage, but this will produce a huge volume
of data (Figure 5). This quantity of data will prevent
real-time rendering performance by requiring
substantial time to load data from disk to memory.
The work presented in this paper addresses this
problem. We unfold the object surface to a 2D
parameter plane, where each point is associated with
the PRT of its corresponding 3D point on the object
surface. The “image” of the PRT is then compressed.
The compression drastically reduces the data volume
and thus allows us to carry out our rendering task in
real-time. Moreover, the choice of sampling rates and
compression algorithms can lead to a variety of level-
of-detail strategies, supporting the applicability of this
approach to complex scenes.

2. Previous Work
Because of the difficulties of rendering dynamic
objects in real time, not much prior work has been
done in this area. The most relevant to ours is [19],
where an impulse response function (IRF) is used to
record the pre-computed radiance transfer (PRT) for
later rendering of impulsive dynamics. Their work
does well in, but is limited to, impulsive dynamics.
Our work is to pre-compute the PRT of primitive
animation sequences, like a walk or a turn, which are
most likely used in the character’s rendering. Just like
an animation along any route can be assembled from
many basic actions [20, 21, 22, 23], the rendered
animation sequence can also be assembled from many
basic animation PRTs.
All work related to PRT [13, 14, 15, 16] until now,
are about static scene pre-computation. Our work
builds upon them, extending this approach to scenes
with animation.

2.1. Organization of the Paper
The rest of the paper first discusses the pre-
computation process and the real-time rendering
process. We then present experimental results. Our
final sections present our conclusion and indicate
future directions that this work might take.

Pre-computation phase:
Step A)
 For each animation frame k
 For each SH basis lighting n
 For each triangle abc

Find a’b’c’ in parametric space
For each pixel d’ inside a’b’c’
 Find d in object space
 Store PRT of d in SHLM (d’)

Step B)
 Compress SHLM

k
n

k

(a) (see Figure 3)

Rendering phase:
Step C)
 During the rendering of frame k

 …
 Find lighting L
 Load SHLMk

 Compute SHLM for L
 Feed SHLM to graphics pipeline
 …

(b)
Figure 1: Outline of the pre-computation and rendering
processes. (a) is the pre-computation process; (b) is the

rendering process.

3. GI Pre-computation
Our work is built upon the fact that an animation is
made up of a sequence of animation frames. Each
animation frame constitutes a particular pose of the
animation. The PRT for each animation frame is
computed. This process generates a huge volume of
PRT data for an animation. Fortunately, the PRT is in
a form ready for compression if recorded in the
parameter space of the object surface. The general
process is outlined in Figure 1(a).
We make use of a known locality property in our
work: neighboring vertices in space and time tend to
have similar PRT data, i.e., spatial and temporal
coherence applies. This coherence also exists in
image/video, and has been successfully exploited for
compression. In a similar manner, the use of
coherence-based compression techniques can greatly
reduce PRT data.
Unlike previous work, our method computes the PRT
for each sample in the 2D parameter space of the
object surface. In this way, the PRT can be recorded
as a 2D “super image”-each pixel consists of an

incident radiance spherical harmonics coefficient
vector. Thus, the inherent spatial and temporal
coherence can be retained and exploited using
image/video compression algorithms applied to PRT
data compression.
One key component of our approach is the
parameterization of the object surface, i.e., build a
one-to-one correspondence between the object surface
and 2D parameter space, say [0..1]×[0..1]. For
generality and simplicity, we assume that the object
surface is made up of triangle meshes. The object
surface is unfolded using a mesh parameterization
scheme [24, 25, 26, 27, 28], so that a one-to-one
correspondence is built up between each object
surface 3D point and each parameter space 2D point,
as shown in Figure 2. The 2D parameter space
[0..1]×[0..1] is sampled and the PRT of each sample
is pre-computed and recorded there.

u0

u1
Object surface

Parameter space
U

V

p0

p1

Figure 2: Unfolding object surface to 2D parameter
space. The left object surface is unfolded to the right
parameter space. p0 is correspondent to u0; p1 to u1.

The non-vertex correspondence can be obtained by
using barycentric coordinates, as shown in Figure 3.

Object surface U

a

c a'

b'
c‘

b

d'

d

V

Parameter space
Figure 3: Mapping of non-vertex points using

barycentric coordinates. a, b, c are triangle vertices,
and a’,b’,c’ are mapped triangle vertices in parameter

space. Barycentric coordinates of d’ are used to recover
its original surface point d.

The incident PRT for each pixel in the parameter
space is then calculated by applying the global
illumination algorithm with each harmonics basis
function as environment lighting [13, 14, 15, 16]. The
result is an “image” with each pixel associated with
its incident PRT spherical harmonics coefficients
vector. We call this “image” the spherical harmonics
light map (SHLM). In the rest of the paper we use

k
nSHLM to denote the SHLM for animation frame k

and spherical harmonics basis lighting Yn
1.

The sampling points located on the triangle edge can
be shared by several neighboring triangles. PRTs for
such sampling points are often computed more than
once, and the mean of all the results are stored at that
point.
3.1 Storage Compression of PRT
The amount of raw data from the pre-computation for
an animation is huge (see Figure 5) and to make
matters worse the data has a high dynamic range.
Fortunately, the image structure of the SHLM, and the
spatial and temporal coherence in the data stored in
the SHLM lends itself to very high compression. A
sequence of SHLMs constitutes a high dynamic range
video, and can be compressed by making use of our
HDR video compression approach. Details of our
HDR video codec are given in the next subsection. It
is convenient to tile all k

nSHLM for the same
animation frame together as one SHLMk. If up to
N -th order spherical harmonics lighting are used in
the PRT computation, k

nSHLM are placed at location
(n/N , n − N · n/N), as shown in Figure 4. This
results in a total of N ×N tiles.

k
0

k
1SHLM SHLM

Figure 4: Arrangement of k

nSHLM . The SHLM at row

r, column c, will be the k
crSHLM +5 .

The final SHLMk is sent to the HDR video coder for
compression. In our test case, each map is 128×128.
The order of the SH used is 2 and this makes a total of
3×3 tiles. Thus the resolution of each kSHLM is
384×384. Two SHLMs are used to cover the whole
body, so the total SHLM size for one animation frame
is 384×768. The original data 384×768×4×100 =
118M is compressed to 3.5M in 3.6 min on a Xeon
2.4GHz PC with 1G memory. The decompression
cost is 78ms for each frame on the same machine.

1 nY is actually spherical harmonics basis function m

lY

where nl = and llnm −−= 2 .

3.2 HDR Video Compression
We use the compression scheme shown in Figure 5.
We store the floating point values of the spherical
harmonic coefficients for the 3 color channels using
the base and exponent used in the RGBE encoding
schema [29]. This encoding converts the RGB triplet
in floating point to a RGBE quadruplet with 8 bits per
component. After this encoding, we separate the RGB
components to compress them using an existing
normal video compression approach, like MPEG [30].
We compress the E component in lossless mode [31].
The decision to use a lossless scheme for the E
component is because of the fact that the quality of
the decompressed HDR data is very sensitive to the
errors introduced in the E component when
compressed using a lossy compression scheme.

Pixel format
transform

Lossy/lossless
Video

compression

Lossless Video
compression

R,G,B

E
HDR Video

Figure 5: General HDR video compression scheme.
R,G,B, i.e., color base, and E, i.e., exponential, are

separated and sent to different compression schemes.
The HDR video compression mode used in this paper,
which is implied by Figure 5 is:
□ HDR video lossy compression

R,G,B channels: lossy (MPEG-4, H.264, etc.)
E channel: lossless (FFV1)

We control the quality of lossy compression for the
RGB components appropriate to our memory budget.
An alternative approach we are investigating uses
JPEG 2000 [32].
JPEG 2000 is a wavelet-based image coding system
for various types of still images (like grayscale,
multicomponent, etc.). Each of its components
supports dynamic range up to 16 bits. It provides a
natural way to encode HDR image in lossy/lossless
mode through linear quantization. The contrast
sensitivity function (CSF) of the human visual system
used in JPEG 2000 is easy to apply to HDR image
encoding. The encoding/decoding of HDR images
using the JPEG 2000 technique [33] is observed about
2 times slower than that using JPEG technique [34],
which uses discrete cosine transform (DCT), although
the former has much better compression quality in
very high compression. We are exploring the
possibility of developing an efficient GPU
implementation of the wavelet decoding scheme for
the application of JPEG 2000 technique to HDR video.

4. Rendering of Dynamic Objects
For rendering the k-th animation frame during the
animation, we first compute the SH coefficients
Li, i = 0,1 …, corresponding to the environmental
light at the place [13] where our dynamic object is
placed.

SHLM Video

L

SHLMk

Figure 6: Rendering of a moving character. Current

pose is used as index to fetch SHLMk. Current position
of character is used to estimate the environment

lighting.
The SHLMk is retrieved from the compressed HDR
video. (See section 3.2 for HDR video codec details).
The current lighting map is constructed by simply
summing up the product of lighting coefficients and
SHLMk, as shown below.

∑ ⋅=
i i

k
i LSHLMSHLM

The obtained SHLM can be sent to the graphics
pipeline as a texture. The dynamic object is then
rendered by texture mapping. See Figure 1(b) for the
outline of the program. Figure 6 gives the scenario of
rendering.

5. Experimental Results
Our experimental subject is a future soldier, an
Offensive Force Warrior (OFW), modeled using 3DS
MAX5.0. For a walk action lasting 2 seconds, we
extract 100 frames by sampling its pose every 0.02
seconds. Each animation frame consists of 2811
vertices and 2197 triangles. A single frame is shown
in Figure 7, displayed with lighting (7a) and lighting
and texture (7b). The associated SHLM is shown in
(7c).
We use “Radiance” (see http://radsite.lbl.gov/) to pre-
compute the PRT. The spherical harmonics basis
lighting is defined as a “glow” type in the “Radiance”
scene definition file. For the parameterization, we
make use of the uv coordinates generated by 3DS
MAX.
The compressed HDR video size varies with the
compression quality. Using the highest compression
quality, compressed data is about 4.2M. Using middle
quality, the size dropped to about 3.5M.

(a) (b)

(c) SHLM31

Figure 7: Some results. (a) with only lighting; (b) with
lighting and texture;(c) SHLM for animation frame 31

with SH order up to 4.
The object surface is diffuse with a reflectance of 0.5.
Since illumination is executed as a texture mapping
process, our algorithm is ready for implementation on
a GPU. SHLM is assembled in the CPU and sent to
the GPU for rendering.
Some statistical data are recorded in Figure 8.
There are some ways to improve the performance of
rendering. First, we can run the decompression step in
a separate process from the main rendering, and
prefetch the SHLM for the next animation frame.
Second, it is possible to feed each compressed SHLM
to graphics hardware and decompress it using the
texture codec capability of graphics hardware to
reduce the traffic between the graphics hardware and

the CPU. Third, we can trade some trivial rendering
quality by selecting fewer SH basis lighting functions.
As shown in Figure 7(c), most PRT information
converges to the first 9 SH basis lighting functions.
We can also send key frame SHLMs to graphics
hardware, and compute all the in-between frames by
doing interpolation in graphics hardware.

Object OFW
(2811 vertices; 2197
triangles)

Action 2 sec. of walk (100 frames)
Max. order of SH 2 (9 coefficients)
Sampling Rate 128 by 128
Pre-computation time of
GI computation

1.5 hours for 100 frames

Raw video data >100 MB (RGBE format)
Compressed HDR video
size

3.5M

Rendering speed >10 frames/sec
Figure 8: Some statistics data of our experiment. The

experiment is performed on an Xeon 2.4G with 1G
memory running Windows XP.

6. Conclusions
We present a pre-computation based approach for
real-time rendering of dynamic objects. The PRT of
object surface points are computed and recorded in
2D parameterized space to form a sequence of
SHLMs. To save storage this SHLM sequence is
compressed using an HDR video compression
technique. Dynamic objects are rendered by adding
up the products of SHLMs and their lighting
coefficients, and then applying the result to the object
surface as a texture.
Our approach can perform GI of dynamic objects in
real-time, and the objects can be viewed from
arbitrary viewpoints and illuminated by arbitrarily
low-frequency environment lighting. It is a new way
for rendering dynamic objects, but it is restricted to
the rendering of predefined actions. Fortunately, this
limit can be overcome by combining this approach
with motion synthesis techniques, like motion graphs
[20].
Compared to [19], our work is suitable for fixed long
actions. It is possible to combine our approach with
that of James and Fatahalian [19] to take advantage of
the fine dynamics rendering of their approach and of
the capability for long actions of our approach.
Recording each PRT as a 2D rectangular image
provides several other benefits. Since we record the
PRT in 2D parametric space, the size of a PRT is
independent of the number of vertices, but depends on
only the object surface area and sampling rate. Thus,

level-of-detail management is possible. Since our
approach keeps the neighborhood of surface 3D
points, the coherence between these neighboring
points is exploited for data compression. Greater
compression rates are achieved by using lossy
compression schemes that throw away some high
frequency information invisible to the human eye.
Lossy compression of HDR image/video is a feasible
way to achieve high compression ratio. Finally, this
representation of PRT is easily implemented on
current graphics hardware as a simple texture
mapping.
Our work supports GI features, like self-shadowing
and self-reflection to make objects look more realistic,
but it cannot create neighboring shadows.

7. Future Work
The pre-computed data can be first compressed by
applying PCA/CPCA [15, 16]. PCA/CPCA is
independent of our approach and can be used to
reduce the number of dimensions before HDR video
compression.
We can use any mesh parameterization scheme. For
example, [25] gives a signal specialized
parameterization, which is a non-uniform
parameterization approach that uses more samples
wherever there are more details.
Our approach to store PRT has possible applications
to other problems. The data from the surface light
field [35] is of huge volume, and can be reduced by
mapping light field data to the parametric space of its
surface for compression. It is also possible to enhance
the rendering effects by using BTF [14].
Another way of improving performance is to pre-
compute only key animation frames, and interpolate
for in-between frames in later rendering. We can also
use non-uniform sampling; where the motion is
smooth, we use a lower frame rate; where the motion
is abrupt, we use a higher frame rate
In some cases where animation blending or inverse
kinematics is applied, SHLMs can be blended or
modified accordingly.

Acknowledgements
This work is partially supported by Office of Naval
Research, ATI Research and the I-4 Corridor Fund.

References
[1] J. F. Blinn and M. E. Newell. Texture and

Reflection in Computer Generated Images. In
Communications of the ACM, 19, 542-546, 1976

[2] R. L. Cook, L. Carpenter, and E. Catmull. The
Reyes image Rendering Architecture. In
Computer Graphics (ACM SIGGRAPH 87
Proceedings)(July 1987), M. C. Stone, Ed., 21,
273-281, 1987

[3] P. Debevec. Rendering Synthetic Objects into
Real Scenes: Bridging Traditional And Image-
based Graphics with Global Illumination and
High Dynamic Range Photography. In
Proceedings of ACM SIGGRAPH 98 (July 1998),
M. Cohen, Ed., 189-198, 1998

[4] H. W. Jensen and P. H. Christensen. Efficient
Simulation of Light Transport in Scenes with
Participating Media using Photo Maps. In ACM
SIGGRAPH 98 Proceedings, 311-320, 1998

[5] J. T. KaJiya. The Rendering Equation. In
Computer Graphics (ACM SIGGRAPH 86
Proceedings)(Aug. 1986), D. C. Evans and R. J.
Athay, Eds., 20, 143-150, 1986

[6] E. Veach and L. J. Guibas. Metropolis Light
Transport. In ACM SIGGRAPH 97 Proceedings
(Aug. 1997), T. Whitted, Ed., 65-76, 1997

[7] G. J. Ward. The RADIANCE Lighting Simulation
and Rendering System. In Proceedings of ACM
SIGGRAPH 94, A. Glaussner, Ed.,459-472, 1994

[8] M. Levoy and P. Hanrahan. Light Field
Rendering. In ACM SIGGRAPH 96 Proceedings,
H.Rushmeier, Ed., 31-42, 1996

[9] D. A. Forsyth, C. K. Yang, and K. B. Teo.
Efficient Radiosity in Dynamic Dnvironments. In
Proc 5'th Eurographics Workshop on Rendering,
313-323, 1994

[10] P. Tole, F. Pellacini, B. Walter, and D. P.
Greenberg. Interactive Global Illumination in
Dynamic Scenes. In ACM Transactions on
Graphics(Proceedings of ACM SIGGRAPH
2002), 21, 3, 537-546, 2002

[11] K. Bala, B. J. Walter and D. P. Greenberg.
Combining Edges and Points for Interactive
High-Quality Rendering. In ACM Transactions
on Graphics (Proceedings of ACM SIGGRAPH
2003), 22, 3, 631-640, 2003

[12] I. Wald, T. Kollig, C. Benthin, A. Keller, and
P. Slusallek. Interactive Global Illumination using
Fast Ray Tracing. In Rendering Techniques
2002(Proceedings of the 13th Eurographics
Workshop on Rendering), 15-24, 2002

[13] P. -P. Sloan, J. Kautz, and J. Snyder.
Precomputed Radiance Transfer for Real-time
Rendering in Dynamic, Low-frequency Lighting
Environments. In ACM Transactions on Graphics,
21, 3, 527-536, 2002

[14] P. -P. Sloan, X. Liu, H. -Y. Shum, and J.
Synder. Bi-Scale Radiance Transfer. In ACM
Transactions on Graphics(Proceedings of ACM
SIGGRAPH 2003), 22, 3, 370-375, 2003

[15] P. -P. Sloan, J. Hall, J. Hart, and J. Snyder.
Clustered Principal Components for Precomputed
Radiance Transfer. In ACM Transactions on
Graphics(Proceedings of ACM SIGGRAPH
2003), 22, 3, 382-391, 2003

[16] J. Lehtinen and J. Kautz. Matrix Radiance
Transfer. In Proceedings of ACM SIGGRAPH
2003 Symposium on Interactive 3D Graphics, 59-
64, 2003

[17] R. Ramamoorthi and P. Hanrahan. An
Efficient Representation for Irradiance
Environment Maps. In Proceedings of ACM
SIGGRAPH 2001, 497-500, 2001

[18] R. Ramamoorthi and P. Hanrahan. Signal-
Processing Framework for Inverse Rendering. In
Proceedings of ACM SIGGRAPH 2001, 117-128,
2001

[19] D. L. James and K. Fatahalian. Precomputing
Interactive Dynamic Deformable Scenes. In ACM
Transactions on Graphics (Proceedings of ACM
SIGGRAPH 2003), 22, 3, 879-887, 2003

[20] L. Kovar, M. Gleicher and F. Pighin. Motion
Graphs. In Proceeding of ACM SIGGRAPH 2002,
473-482, 2002

[21] C. –K. Liu, and Z. Popovic. Synthesis of
Complex Dynamic Character Motion from
Simple Animations. In Proceedings of ACM
SIGGRAPH 2002, 408-416, 2002

[22] Y. Li, T. Wang, and H. –Y. Shum. Motion
Texture: A Two-Level Statistical Model for
Character Motion Synthesis. In Proceedings of
ACM SIGGRAPH 2002, 465-472, 2002

[23] O. Arikan and D. A. Forsyth. Interactive
Motion Generation from Examples. In
Proceedings of ACM SIGGRAPH 2002, 483-490,
2002

[24] X. Gu, S. J. Gortler, and H. Hoppe. Geometry
Images. In Proceedings of ACM SIGGRAPH
2002, 355-361, 2002

[25] P. V. Sander, S. J. Gortler, J. Snyder, and H.
Hoppe. Signal-Specialized Parameterization. In
Thirteenth Eurographics Workshop on Rendering
(2002), 87-98, 2002

[26] P. Alliez, M. Meyer, and M. Desbrun.
Interactive Geometry Remeshing. In Proceedings
of ACM SIGGRAPH 2002, 347-354, 2002

[27] B. Levy, S. Petitjean, N. Ray, and J. Maillot.
Least Square Conformal Maps for Automatic

Texture Atlas Generation. In Proceedings of
ACM SIGGRAPH 2002, 362-371, 2002

[28] A. Khodakovsky, N. Litke and P. Schroder.
Globally Smooth Parameterizations with Low
Distortion. In Proceedings of ACM SIGGRAPH
2003, 350-357, 2003

[29] G. W. Larson. Real pixels. Graphics Gems II.
Academic Press. pp. 80-83, 1991

[30] D. Salomen. Data Compression: The
complete Reference (2nd edtion), Springer, 2000

[31] FFV1.
http://www.mplayerhq.hu/~michael/ffv1.html.
2004

[32] D. S. Taubman and M. W. Marcellin. JPEG
2000: Image Compression Fundamentals,
Standards, and Practice. Kluwer Academic
Publishers, Boston, 2002

[33] JasPer.
http://www.ece.uvic.ca/~mdadams/jasper/index.ht
ml. 2004

[34] FFMPEG.
http://ffmpeg.sourceforge.net/index.org2.html.
2004

[35] W. –C. Chen, J. –Y. Bouguet, M. Chu, and R.
Grzeszczuk. Light Field Mapping: Efficient
Representation and Hardware Rendering of
Surface Light Field. In Proceedings of ACM
SIGGRAPH 2002, 447-456, 2002

