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ABSTRACT 
 
The research reported here anticipates the future of smart buildings by developing algorithms that categorize the 
movements of individuals based on such characteristics as motion vectors, velocity vectors, head orientation vectors 
and predetermined positions. The intended applications include detecting intrusions, helping lost visitors, and changing 
the artwork on virtual posters to reflect an individual's presumed interests. The vectors we capture represent trajectories 
in a multi-dimensional space. To make sense out of these, we first segment a trajectory into sub-trajectories, typically 
based on time. To describe each sub-trajectory, we use primitive patterns of body movement and additional 
information, e.g., average speed during this interval, head movement and place or object nearby. That is, for each sub-
trajectory, we use a tuple of the following form: (interval_ID, body_movement, avg_speed, head_movement, 
places_passed). Since trajectories may have many outliers introduced by sensor failures or uneven human movement, 
we have developed a neural network-based pattern extraction subsystem that can handle intervals with noisy data. The 
choice of these attributes and our current classification of behaviors do not imply that these are the only or best ways to 
categorize behaviors. However, we do not see that as the focus of the research reported here. Rather, our goal is to show 
that the use of primitive attributes (low level), neural networks to identify categories of recognizable simple behaviors 
(middle level) and a regular expression-based means of describing intent (high level) is sufficient to provide a means to 
convert observable low-level attributes into the recognition of potential intents.  
 
Keywords: Trajectory matching, pattern recognition, artificial neural networks, intrusion detection, pervasive 

computing. 
 

1. INTRODUCTION 
 
Pervasive Computing (Ubiquitous Computing) refers to a computing environment that ubiquitously provides services to 
users and that makes the actual computing devices and underlying networks transparent to users. Pervasive computing 
is a trend that is receiving a great deal of attention in the research community, industry, government and the popular 
press.  For example, the Massachusetts Institute of Technology (MIT) is working on a project called Oxygen [20]. 
This name reflects a vision of pervasive computing that will be freely available everywhere, like oxygen in the air we 
breathe. Carnegie Mellon University's Human Computer Interaction Institute (HCII) is working on a similar project 
called Aura [10], in order to provide each user with an invisible halo of computing and information services that 
persists regardless of location. Moreover, IBM's project Planet Blue [14] is aimed to create and deploy a technology-
assisted immersive environment used by knowledge workers in their daily lives, in which individuals and teams can 
create, learn, use and share knowledge with few limitations or disruptions, regardless of  physical location or context.  
 
With the help of pervasive computing, a smart home or office, controlling many devices within its environment, adapts 
itself to inhabitants and changing conditions, and communicates with inhabitants in a natural way such as speech and 
gesture. Several smart home projects have been conducted in the last decade. The Georgia Tech Aware Home [15] and 
the MIT Intelligent Room [23] employ many sensors to detect user locations and activities within an actual house. The 
Neural Network House at the University of Colorado [18] uses a neural network system to control basic residential 
comfort systems—air heating, lighting, ventilation, and water heating, with the goal of energy conservation.  
Moreover, The MavHome project [4, 6] at the University of Texas at Arlington seeks to maximize inhabitant comfort 
and minimize operation cost by predicting the mobility patterns and device usages of the inhabitants. With appropriate 
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sensors, smart homes will soon provide more extensive services, including analyzing the health of each inhabitant and 
providing security by recognizing the entry of unknown people.  
 
In this paper, we propose algorithms that can be used to add useful services to smart homes and offices. By detecting 
trajectory patterns, one can recognize behaviors that aid in intrusion detection, help lost visitors, and may even invoke 
the changing of artwork on virtual posters to reflect an individual's presumed interests.  
 
The movement of individuals can be monitored by sensor networks. Using these, we can obtain or calculate movement 
characteristics (low-level features) such as spatial positions, motion vectors, velocity vectors and head orientation 
vectors.  Continuous movements of individuals form trajectories. By analyzing the movement characteristics of those 
trajectories, we can mine useful knowledge. For example, in the computer science building at the University of Central 
Florida (UCF), graduate student labs with bay windows are on the first floor, and professors’ offices, the general office 
and the computer equipment room are on the second. If a person goes around on the first floor, stops in front of many 
windows and moves his head to face windows at 2:00PM, he is likely to be looking for some graduate student. If a 
person goes up to the second floor, and walks for a while and stands still near a professor’s office, he is probably 
waiting for that particular professor.  If he gazes intently at the papers on one part of the professor’s bulletin board, he 
is showing interest in that area of research. If a person is in front of the computer equipment room at 3:00AM, and 
moves his head from time to time, he may be looking to steal equipment. This is even more probable if he moves in a 
determined fashion away from the room each time another person enters the hallway and then returns as soon as no one 
else is present. 
 
In a literature review, we found that almost all existing algorithms for trajectory matching focus on low-level trajectory 
matching (i.e., shape matching), and therefore are not suitable for semantic-level trajectory pattern matching, which are 
more meaningful in the applications we are considering. We also found that there has been little research on deriving 
high-level representations (e.g. going straight, standing still, turning left, turning right, circling, and zigzagging) from 
low-level trajectory features (e.g., positions, and velocity vectors), and using these high-level representations for 
discovering similar trajectories and detecting various typical trajectory patterns.  
 
In this paper, we address the problem of detecting trajectory patterns in pervasive computing environments. The main 
contributions of this paper can be summarized as follows. First we develop a neural-network based feature extraction 
system to derive high-level representations from low-level trajectory features. Second, we propose a way to express 
patterns using regular expressions. Lastly, we present a pattern detection algorithm using these high-level 
representations and pattern expressions.  
 
The remainder of this paper is organized as follows. Section 2 reviews related work. In Section 3, we present our 
approach to detect trajectory patterns. Section 4 describes our performance experiments and presents current results. 
Finally we conclude the paper and identify directions for future research in Section 5.  
 

2. RELATED WORK 
 
With the rapid growth of GPS techniques and mobile computing, collecting large volume of spatiotemporal data is now 
possible. In [7], several trajectory representations are discussed. The trajectory of a moving object is usually 
represented as a sequence of successive locations in a 2D or 3D space. Discovering similar trajectories of moving 
objects can be very useful for moving objects’ pattern matching and pattern prediction. For example, by tracking 
animals’ trajectories, we can determine migration patterns of certain groups of animals. In a traffic management system, 
we can mine trajectories of various vehicles to figure out typical traffic patterns. Approaches to measure the similarity 
between trajectories include the use of the Euclidean distance, the Dynamic Time Warping (DTW) distance [26], the 
Longest Common Subsequence (LCSS) [25], and the Normalized Edit Distance (NED) [8]. The Euclidean distance and 
DTW distance are very sensitive to noise introduced due to anomalies in the sensors. To cope with noise, the LCSS, a 
variation of the edit distance, matches two sequences by allowing them to stretch, without rearranging the sequence of 
the elements, but allowing some elements to be unmatched. Meanwhile, the NED, another variation of the edit distance, 
converts the trajectories into a symbolic representation (movement pattern strings). Movement pattern strings encode 
both the movement directions and the movement distance information of the trajectories, and then the distances that are 
computed in a symbolic space are lower bounds of the distances of the original trajectory data. Although all four major 



approaches are able to remove the shifting and scaling effects after some normalization and/or transformation, they 
cannot remove the rotation effect. For example, if one trajectory is a straight line and the other is generated by rotating 
the previous one, the distance between the two trajectories may be very large and then the two trajectories are treated as 
not similar. Discovering similar trajectories unaffected by rotation is discussed in [5, 16] using low-level features. 
Specifically, a trajectory is represented as the path and speed curves in [16], and this representation separates positional 
information from temporal information. The path curve records the position of the tracked object while the speed curve 
records the magnitude of its velocity. From these, the curve features, invariant to scale, translation and rotation, are 
derived. Furthermore, in [3], a trajectory is partitioned into sub-trajectories, and each sub-trajectory is then modeled by 
a set of spatial and temporal translation invariant attributes for motion trajectory matching. Those low-level trajectory 
matching algorithms, however, are not suitable for semantic-level trajectory pattern matching. In this paper, we will 
address trajectory pattern matching using high-level features.  
 
Mining sequential patterns, an important problem in data mining, refers to discovering all sequential patterns with a 
user specified minimum support, where the support of a pattern is the number of data-sequences that contain the pattern 
[1].  An example of a sequential pattern is “20% of customers bought a laptop in one transaction, followed by 
purchasing a portable USB Flash Drive in a later transaction.”  In [22], the problem of mining sequential patterns is 
generalized to consider 1) time constraints that specify a minimum and/or maximum time period between adjacent 
items in a pattern, 2) time windows that allow the items of a sequential pattern to span a set of transactions within a 
user-specified time window, and 3) item taxonomies that allow sequential patterns to include items across all levels of a 
user-defined taxonomy (is-a hierarchy). In order to reduce the computational cost and overwhelming volume of 
potentially useless sequential patterns, some user-specified constraints in the form of episodes and regular expressions, 
and how to push such constraints inside the pattern mining process (i.e., prune the search space of sequential patterns 
during computation), are also studied in [17]. The “Apriori property” employed in association rule mining can be 
applied to mining sequential patterns because, if a sequential pattern of length k is infrequent, its superset (of length 
k+1) cannot be frequent. Therefore, most of the methods for mining sequential patterns adopt variations of Apriori-like 
algorithms, although they may consider different constraints. Another approach for mining sequential patterns is to use 
the frequent-pattern growth (FP-growth) technique without candidate generation [11]. In this paper, we will use one of 
the above algorithms plus our intuition to derive some common sequence for a specific trajectory pattern. 
 
 

 
Figure 1.  Pattern Extraction Architecture 

 
3. TRAJECTORY PATTERN DETECTION  

 
In this section, we outline our trajectory pattern detection system. It consists of three parts: primitive pattern extraction, 
typical pattern expression, and pattern detection. Generally, pattern extraction can have three layers as shown in Figure 
1. In this paper, we focus on human trajectories in a smart building. We assume that the movement of individuals in a 
smart building is monitored by some sensors, and that movement characteristics such as spatial positions, motion 
vectors, velocity vectors and head orientation vectors can be obtained or derived. We also assume the trajectory is 
represented as a sequence of successive locations in a 2D space. With some modifications, our system should be able to 
handle other moving objects’ trajectory patterns in a 3D space.  
 
3.1 Neural Network-based Primitive Pattern Extraction 
Trajectories may have many outliers introduced by sensor failures or by the unsteady motion exhibited in normal 
human movement. In this paper, a neural network-based primitive pattern extraction subsystem is proposed, which can 
be trained for various primitive patterns and can tackle trajectories with noisy outliers.  



 
We first segment a trajectory into sub-trajectories based on time interval (e.g. 10 seconds), and each sub-trajectory 
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interval), we use some primitive patterns of body movement and additional information (e.g., average speed during this 
interval, head movement and place or object passing by). Specifically, we first define six primitive patterns for human 
body movement: G(go straight), L(turn left), R(turn right), S(stop), C(circle), Z(zigzag), as shown in Figure 2. For each 
primitive pattern of human body movement, we can use speed features to describe it: H(high speed), M(medium speed), 
and S(slow speed).  As a human moves, his head also moves and 5 primitive patterns for head movement are as 
follows: F(look forward), L(look left), R(look right), U(look up), D(look down). Moreover, for places or objects 
passing by a human, several primitives are as follows: P(professor office), S(student lab), C(computer equipment 
room), O(poster or other object of art), W(wall), T(treasure or cash office). That is, for each sub-trajectory, we can use a 
tuple to describe it:  (interval_ID, body_movement, avg_speed, head_movement, places_passing). 
 
For example, the tuple (1, G, M, F, P) represents: during time interval 1, a person went straight with medium speed and 
looking forward head pose, passing by a professor’s office. From this we can create a relational database for a trajectory 
with those tuples, and create indices, and use SQL to evaluate queries.      
 
    
 

 
Figure 2.  Primitive Patterns of Body Movement 

 



 
 

Figure 3.  Neural Network-based Primitive Pattern Extraction 

 
This then gives rise to the central issue: how to extract primitive patterns and other relevant information. For body 
movement, we can employ a neural network approach as explained later. For average speed, we can calculate the length 
of the sub-trajectory, divide the length by the time interval, and then compare the result with user-specified speed 
thresholds. For head movement, we can use the head orientation vectors. For places or objects passing by, we can scan 
through all objects with spatial positions and find the nearest one during the interval if the number of objects is small, 
or employ some nearest neighbor query algorithms [13, 21, 24], with spatial indices if the number of objects is large. 
 
For body movement, we use a multilayer feed-forward neural network with back propagation for classification as 
shown in Figure 3. A trajectory is first segmented into sub-trajectories, and each sub-trajectory S is normalized as 
follows: 
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That is, each point subtracts the mean of S, and then is divided by the standard deviation of S [25]. After normalization, 
each sub-trajectory is sequentially fed into the input layer, and the input layer size is determined by the number of 
points in S. The output layer size is 6 because there are 6 predefined primitive patterns of body movement.  As shown 
in Figure 3, the trajectory is segmented into 3 sub-trajectories, and 3 corresponding primitive patterns are G, C, and R 
respectively.  
 
3.2 Pattern Expression using regular expression 
After defining some primitive trajectory patterns represented as ASCII characters, we can use them to define more 
complex trajectory patterns. As stated in [2, 9, 12, 19], the regular expression (RE) notation is valuable for describing 
searches for interesting sequential patterns, possesses sufficient expressive power for specifying a wide range of 
interesting, nontrivial patterns, and has exactly the same expressive power as deterministic finite automata. By using 
regular-expression notation, we can describe a pattern at a high level. In this paper, we adopt the Unix-style notation.   
 
To make this notation clear and unambiguous, we first recall some basic rules for UNIX-style regular expressions: 
• . matches any character. 
• [set] matches one of the characters in the set. A shorthand C-Z is used to specify a set of characters from C to Z.  
• The operator | is to denote union. 
• The operator * means “zero or one of.” 
• The operator + means “one or more of.” 
Using regular expression and primitive trajectory patterns, we can define a trajectory pattern P as (body_movement_RE, 
avg_speed_RE, head_movement_RE, places_RE).  
 
For example, we can define the pattern P1 to find a professor in the computer science department building as:  
(G+.*S+,  Φ,  Φ,  .*P+) 
where Φ indicates the empty regular expression. P1 says that a tracked person walks for a while and stands still near a 
professor’s office.  



Another pattern P2 , to potentially steal items from the computer equipment room, might be defined as : 
(G+.*S+,  Φ,  .*[LRUD]+.*,  .*C+).  
P2  says that a tracked person walks for a while, his head moves from time to time, and finally he stops by the computer 
equipment room.   
 
Moreover, we define an event to consist of a set of patterns. Using operations for regular sets, we define seven 
operators over events. Of these the first six do not go beyond normal operations under which regular sets are closed 
[12]; the seventh (concurrency) is an extension and is a major area for our continuing research. 
• The union of two events E1 and E2, denoted as , is the set of patterns that are in either E21 EE U 1 or E2, or both.   
• The intersection of two events E1 and E2, denoted as , is the set of patterns that are in both E21 EE I 1 and E2.   
• The exclusive union of two events E1 and E2, denoted as 21 EE ⊕ , is the set of patterns that are in either E1 or E2, or 

both.   
• The concatenation of events E1 and E2, denoted as , is the set of patterns that can be formed by taking any 

patterns in E
21 EE

1 and concatenating it with any patterns in E2.  
• The closure of an event E is denoted E*and represents the set of those patterns that can be formed by taking any 

number of patterns from E, possibly with repetitions and concatenating all of them.   
• The complement of event E, denoted as ~E, is the set of patterns that are not in E.   
• The concurrency of two events is expressed as .   21 || EE
 
For example, we can first define some higher level expressions as follows: 
Body Movement Higher Level Expressions: 
Idle = { } empty set 
Moving = (G + L + R + C + Z)* 
 
Speed Higher Level Expressions: 
Relaxed = (M + S)+ 
Hectic = ((M + S)* H (M + S)*)+ 
 
Now combining these, we can then get more complex patterns (i.e., events): 
EasyWalk = Moving || Relaxed 
AgitatedWalk = Moving || Hectic 
 
As shown above, we can use primitive trajectories to describe a wide range of interesting complex patterns. 
Furthermore, we can use operators over those complex patterns, and compose more complex patterns (i.e., events).  
 
3.3 Concurrency 
The representation we are presenting in this paper requires us to use the concurrency operator to express the desire to 
temporally link two or more of the four dimensions we are recording. Without the concurrency operator, our current 
scheme treats each dimension independently. We could have used an alternate representation that retains the data as 
points in a four-dimensional space. In such a four dimensional representation, we could use an expression like 
 (< G , . , . , .>+ < . , . , . , . >* < S , . , . , P >+) 
for the professor seeking pattern. This retains the concurrency of stopping in front of the professor's office, whereas  
(G+.*S+,  Φ,  Φ,  .*P+) 
could be matched even when the stopping has no overlap with the position at the professor's office. Of course, the 
concurrency operator could account for this, but that introduces complexity in the matching algorithm. 
 
There is, however, a problem with this new notation when it comes to the thievery case. There, we previously used  
(G+.*S+,  Φ,  .*[LRUD]+.*,  .*C+) 
This nicely captures the fact that the scanning action of the head might occur anywhere in the process of going to the 
computer room, even at the computer room. In the alternate notation, we might use 
(< G , . , . , .>+ < . , . , . , . >* < S , . , . , P >+)  ∩  ( Φ , Φ , .*[LRUD]+.* , Φ ) 
But the inclusion of intersection adds complexity. 



 
Clearly, there are pluses and minuses of each representation. Further experimentation is required to determine which is 
more effective under what circumstances. However, even if we determine that the four-dimensional representation is 
better, we will still retain the concurrency operator, but its use will be limited to representing concurrency of events 
associated with separate objects (typically people) whose movement is being tracked. This gives us the opportunity to 
represent actions that seem to be influenced by the presence or absence of others who might observe a person’s 
behavior. 
 
3.4 Pattern Detection 
In this section, we will present the algorithm for pattern detection as shown in Figure 4. Here we assume that the 
trajectory information is extracted into 4 strings: body_movement_string, avg_speed_string, head_movement_string, 
and place_passing_string, and the interested patterns using regular expression are specified by the user. Our goal is to 
detect several candidate patterns based on these 4 strings. No attempt is made in this algorithm to deal with complex 
events.  
 
DETECTPATTERN (PE, BS, AS, HS, PS) 
Input: 
  pattern expressions          PE   
  body_movement_string         BS 
  avg_speed_string             AS  
  head_movement_string         HS 
  place_passing_string         PS 
Output: 
  A set of candidate patterns  P  
 
01 P ← Ø 
02 for each pattern expressions pe∈PE  do 
03     pattern_exist ← FALSE; 
04     generate regular expressions of pe: be for BS, ae for AS, he for HS, and ps for PS.  
05     for each occurrence (i,j) of be  in BS do 
06         if ae, he, ps  occur in AS(i,j), HS(i,j), and PS(i,j) respectively  
07              add (i,j) into the interval list ilist  
08              pattern_exist ← TURE; 
09         endif 
10     enddo 
11     if pattern_exist is TURE  
12         calculate the maximum number count, denoted as maxcount, of intervals without overlapping in ilist  
13         p.name ← GETNAME(pe); 
14         p.maxcount ← maxcount; 
15         add p into the priority queue P   
16     endif 
17 enddo 
18 return P           

 

Figure 4.  Pattern Detection Algorithm 

 



As shown in Figure 4, the set of candidate patterns P is initialized to be empty. In the for-loop (from lines 2 to 17), each 
interested pattern is examined to determine whether the pattern occurs or not, and if the pattern occurs, we also 
calculate the frequency of the pattern. The higher the frequency of the pattern, the more likely the traced person acts in 
this way. Specifically, at line 4, for each pattern pe, we decompose it based on body movement, average speed, head 
movement, and places passing by.  From lines 5 to 10, we examine whether the pattern occurs. From lines 11 to 16, if 
the pattern exits, we put the pattern name with the pattern’s frequency into the priority queue P. P orders patterns from 
highest to lowest frequency.  The first pattern in P is regarded as the most likely pattern. 
 

4. EXPERIMENTS 
 
In our experiments, we use Unreal II, a game engine, to generate trajectories. Given a pattern or a task, several subjects 
are asked to use the system similar to playing games as shown in Figure 5. For this trial, we assume that we are only 
interested in two tasks: finding a professor, and stealing items from the computer equipment room. That is:     
P1 = (G+.*S+,  Φ,  Φ,  .*P+) 
P2 = (G+.*S+,  Φ, .*[LRUD]+.*,  .*C+).   
 
For each pattern detection test, students can do either P1 or P2 or any other tasks. The output of our system is either P1 
or   P2 or unknown pattern P3. As students go around the building, navigating with a keyboard and mouse, our system 
records the shooter’s position at each time interval. The serial positions are used to generate an average speed string and 
body movement strings by employing a neural network. Furthermore, we treat the pistol movement as the head 
movement, recording the direction of its movement, and using this to generate a head movement string.  Meanwhile, 
we predefine some hot spots. When the shooter passes by those hot spots, they are recorded to generate the place 
passing string. When a subject completes the task, our system employs the pattern detection algorithm in Figure 4 to 
guess the subject’s possible patterns. In addition, for each primitive pattern, we generate 5,000 neural network training 
data sets with various noise ratios. Thus, 30,000 data sets are used to train the neural network.  

 
 

  
 

Figure 5.  Experimental Environment 

 
 
Since our goal here is studying preliminary algorithms, not doing a full-fledged validation on a large variation of 
behaviors, we invited a small number of subjects, 4 students in our department, to assist in the test. Each student was 
asked to run our system 30 times (i.e., testing each pattern 10 times). The experimental results are shown in Table 1. 
The detection rate for P1 is more then 90%, the one for P2 is slightly better than 80%, and the one for P3 is less than 
70%. The fail cases for P1 include standing still in front of the professor room for a very short time. Unfortunately, the 
granularity of our system was not fine enough to observe behaviors of short duration. The fail cases for P2 include going 



straight towards the computer equipment root without any head movement. Occasionally, unknown patterns P3 are 
detected wrongly as P1 or P2. In order to reduce the detection error, we can improve the sampling rate with the attendant 
cost of data overhead, and find the more accurate pattern expression with sequential pattern mining algorithms using 
large amounts of real data.     

 
 

5. CONCLUSIONS 
 
We have identified that almost all existing algorithms for trajectory matching are not suitable for semantic-level 
trajectory pattern matching. We have therefore proposed a novel pattern detection algorithm. Experimental results show 
that this algorithm can achieve good detection rate (i.e., more than 80%) for predefined patterns.  
 
Some interesting topics for future research are as follows:  
• Creating a real environment in a building to collect huge amount of real data, and using these real data to help 

derive more accurate pattern expression for each interested pattern.  
• Experimenting with the efficacy of multi-dimensional representations (those that retain concurrency information) 

in comparison to those describing each dimension independently.  
• Extending the algorithm presented here to handle event composition, especially as regards concurrency of patterns 

associated with multiple tracked objects.  
• Using evolutionary computing techniques to evolve a population of strings representing each behavior of interest. 

An issue here is how we would compute the fitness function, but we believe that can be resolved with a large 
volunteer group recruited on the Web. Interestingly, those few who would try to subvert the quality of the fitness 
function may actually help us by generating mutations. 
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