
Authoring and Delivering Mixed Reality Experiences

Matthew O’Connor
Media Convergence Laboratory

Institute for Simulation and Training
University of Central Florida

Charles E. Hughes
Media Convergence Laboratory

School of Computer Science
University of Central Florida

Keywords: Mixed reality, scripting, interactive experiences.

ABSTRACT

Mixed Reality (MR) offers a unique challenge in
integrating interacting agents, show-control devices,
graphics and audio presentation, and human interaction into
a single consolidated system. While each component may
be addressed individually, combining their various
functionalities via a dynamic script that delivers an
interactive, non-linear story (scenario, world) requires a
robust process and system. In this paper, we present a
scripting engine and an XML-based language that allows an
author to interface human interaction with the other
elements of an MR experience. The engine and language
allow for a wide range of functionality, including real-time
binding of variables, interaction with external engines (such
as graphics and audio) and sensors/actuators (such as
tracking and special effects), a pluggable interface for
autonomous interacting agents, a simple integrated physics
engine, and a common architecture for expressing actions
that have graphical and auditory representations. We exhibit
the functionality of flexibility of our system through two
major scenarios: a training exercise and an exploratory
experience that we demonstrated at a science center in fall,
2004.

1. INTRODUCTION

Current systems for Mixed Reality authoring are
suitable for creating visually-based augmented reality
applications. In particular, the AMIRE system [1] provides a
family of components that address issues such as tracking,
registration, video capture and rendering. Their audio library
is focused on delivery of standard clips, not on 3d
immersion. This system has served as the basis for creating
user-friendly environments for authoring specific
application from within the real world that is being
augmented [3][8].

Panda3D provides a scene graph-based rendering
system along with a procedural authoring environment. This
procedural language includes commands for manipulating
the scene graph, sending and receiving messages, playing
audio files, scheduling tasks and controlling behaviors by
finite state machines and Python methods [7].

In contrast to the capabilities provided by these and
other existing systems, our goal is a system that supports the
creation and delivery of the full range of Mixed and Virtual

Reality experiences from augmented reality to augmented
virtuality to pure virtual; from mixed audio-visual-SFX to
pure audio to pure visual; from reactive and preplanned
behaviors to AI-based behaviors. Our initial approach,
prototyped in various versions during 2002 and 2003 [4],
provided the design of a system comprised of cooperating
engines (story, graphics, audio and special effects), with the
story engine being the central component, the only one that
deals with the semantics of actions – the other engines
primarily provide services, such as visualization and
auralization (Figure 1). These earlier story engines required
that experiences be authored in Java, whereas the system
reported here uses an agent-based approach, with behaviors
describable in XML scripts or via AI plug-ins. Finally, our
older systems, while providing platform independent story
and special effects engines, were tied to Linux for graphics
and to Windows for audio. All engines in the current version
run on Linux and Windows. We also believe that MacOS
compatibility will be easy to achieve, although we have not
tested this as yet.

The focus of this paper is on the story/scripting engine.
Separate papers deal with the audio engine and the process,
rather than the technology, of creating stories.

2. THE MR SCRIPTING ENGINE
2.1 Overview

The MR Scripting Engine (MRScript hereafter) is a
platform for developing experiences that involve multiple
interactive system elements. These elements include, but are
not limited to, graphics, audio, and show-control devices.
MR Script’s objective is to provide a linking,
synchronizing/control, and agent/actor support mechanism
for utilizing these elements in an interactive environment.
Environments that are candidates for using MRScipt include
those delivering interactive story-telling experiences,
technology demonstrations, games, and educational or
training programs. The experiences can involve full or
partial mixed-reality, but do not necessarily have to be
visual – pure aural experiences can and have been
developed/delivered with MRScript. The basic structure of
MRScript allows multiple elements to connect and be
utilized for the realization of any number of such
environments, whether shared or stand-alone.

Besides linking and synchronizing diverse sensory
components, MRScript operates as the nerve center for all
artificial intelligence, scripted, and user-interactive

behavior. It is the focal point for a user's interactions, and
allows environments and experiences to be developed using
any level of artificial intelligence or scripting that is
appropriate to achieve a particular goal. The simplest means
by which MRScript provides behaviors is through its
scripting language. This language was originally conceived
to support only the simplest of pre-scheduled and reactive
behaviors, but it has already been used to successfully
perform surprisingly complex tasks, ones that we had
originally expected would be handled by AI plug-ins. This
flexibility was possible due to the language’s easy
extensibility, which was a primary design goal.

Figure 1. Integration of MR system

2.2 Engine Specifics
An experience that is delivered by MRScript starts

when all the system elements required to support the given
experience connect to the scripting engine. Once these
elements connect, the experience loaded by the engine may
begin to take form. This happens with direct interaction
between MRScript and its client elements; each client
element can be communicated with explicitly, or in
broadcast communication, and each can reply appropriately
to MRScript with necessary information or user interactions.

2.2.1 Components

MRScript is composed of various parts: the main
engine, a physics engine, a real-time dynamic reference
resolution system, an Advanced Scripting Language
interface (ASL), and client networking support. The
elemental construct that the engine is based on is interacting
agents. Agents are the definitive elements for a given script.
Each agent contains intrinsic elements, such as physics
characteristics, that allow for a common interface with the
system. Agents may or may not have representation on
external client elements that connect during runtime (for
example, an agent may exist as a sound on one client
element, but have no graphical representation – this is
perfectly valid).

Within agents, behaviors of three flavors are available:
actions, triggers, and reflexes. Each agent also has a set of
state variables, which describes the agent's state at any given
time (these are akin to static variables in a normal

programming context, the only real difference being that
state variables are normally updated once at the end of each
iteration, rather than at the moment of each assignment or
mathematical operation). Agents may also execute
initialization commands for new client elements that
connect. These are explicitly defined in an initialization
block.

The script is used to define agents for the scripting
engine. Scripts may be composed of several component
script files, which may include other component files and be
included by the main script file. This allows components to
be generated and dropped in for usage in any given script.
Scripts generally define not only agents, but regional
information that can be used with the physical location of
agents to provide semantic value to their location, or
enable/disable features of certain agents, etc.

2.2.2 Engine Operation

The engine operates on an iterative basis. That is,
operations on state variables, transmission of signals, etc, is
carried out once all agents have operated. Therefore, there
are two stages to the operation of the engine during normal
running conditions: update, and operate. The update stage
forces state variables to update their values to whatever
changed values were stored in the midst of the last operation
cycle; it also copies signals that were queued up during the
most recent operating cycle to an operating queue that is
used during the next iteration (note that this ensures that
signals received during one iteration must wait for the next
iteration before they can be acted upon). Finally, the update
stage makes internal system elements such as the system
clock current. The operate stage causes agents to evaluate
any signals received, to evaluate any triggers that have fired,
and to operate reflexes (triggers and reflexes are discussed
in the next section). At the end of this stage, the agent's
physics attributes are subject to the physics engine, which
considers such things as linear and angular
velocity/acceleration when updating the agent's physical
characteristics. See Table 1 for attributes that can be
controlled by the physics engine.

Various special signals are used to notify agents of
certain system activities. The START signal is transmitted
to all agents when the system starts iterating. The STOP
signal is transmitted when a stop is requested, after which
agents have five iterations to act on the signal before
iterating ceases. Various other signals are used to signal
particular agents (the SYSTEM agent is one such agent) of
events, such as mouse-movement, button presses, etc.

3. RUNNING AN EXPERIENCE
3.1 Interacting with Client Elements

The system can be operated in one of two modes: GUI
and Console. The GUI mode displays an interactive
graphical user interface that can be used to start, stop, pause,
step, and communicate with the system (or any connected
client elements). The Console mode starts system iteration
as soon as all specified client elements have connected.
Note that no a priori number of elements is required in order
for iteration to occur in either the GUI or Console modes.

Console mode has no direct interactive system, so the script
is basically left to its own devices when the system is run in
this manner. The motivation for this was deployment of
experiences, where the system would be required to operate
completely autonomously.

Table 1. Settable attributes controlled by physics engine.
Element Parts Units
.location .x .y .z

mm

.orientation .yaw .pitch .roll °

.linearVelocity .x .y .z

mm/s

.linearAcceleration .x .y .z

mm/s2

.angularVelocity .yaw .pitch .roll °/s

.angularAcceleration .yaw .pitch .roll °/s2

3.2 Scripting Fundamentals

Communication among agents is one of the
fundamental requirements for a system involving interacting
agents. The goal is, of course, to allow a collection of agents
to act as a whole, or interact in an interesting manner. To
fully understand how this is accomplished in MRScript, we
will explore how agents are created by the script writer.

Agents are defined by state variables, actions, triggers
and reflexes. The three behaviors (actions, triggers,
reflexes) all may contain multiple cases, each of which
include guards, results, and commands. A guard ensures
that certain state variable conditions are met before the case
is allowed to evaluate its results or commands. A case may
have zero guards, in which case its results and commands
are always evaluated. Results are used to change state
variable values, either using explicit setting of values, or
arithmetic operations and expressions. Commands are the
communication mechanism for the agent, in the scripting
language: communiques are the only form of
communication among the agents themselves, whereas
graphics, audio and show-control commands are used to
trigger actions on connected client elements (for example,
an agent's action may cause a movie to play on a graphics
element). A third class, whose members are known as
system commands, are available for scripting-engine-
specific interaction (such as debug enabling). Advanced
Scripting Language (ASL) blocks are considered to be
results, due to their functionality. Details of ASL are given
later in this paper.

Actions are behaviors that must be explicitly triggered
by a signal. Signals (known as communiques in the scripting
language) are the primary method for agent interaction, both
among themselves and with the engine itself (the engine has
an intrinsic system agent that allows us to use a common
interface for invoking its activities). Once an action has
been triggered by a signal, it is evaluated the next iteration
that the agent is operated upon.

Triggers are based on the operating time of the
experience, as maintained by the scripting engine. A trigger
is tripped when its time value is exceeded by the scripting
engine's system clock (this clock tells time relative to the
start of system iteration – if the system becomes paused, the
clock also pauses and continues precisely where it left off
when the system starts running again). Triggers can be reset
automatically, or be one-shot triggers that must wait until
the system is restarted before they can be used again. The
time value they are based on can be dynamic.

Reflexes operate during every iteration, and can be used
to check for certain state variable conditions; this is the
motivation for their existence. Once a reflex's guards are all
enabled (evaluate to true), its results and commands are
executed. This is perhaps the most expensive behavior
element of the three, since extensive evaluation may take
place. However, it can be extremely useful for scanning for
changes in state, or updating state variables per some
formula, etc.

3.3 The Advanced Scripting Language (ASL)

ASL was inspired by the need for extended
functionality, such as flow-control, real-time updating and
evaluating of state variables (i.e., in the midst of a single
iteration), and loops. ASL uses a very rudimentary form of
the language structure found in C and Java. It allows the use
of all references, dynamic state variable reference
generation (described below) and all interaction capable
with the normal scripting constructs.

The programming elements ASL defines are: if, for,
goto and assignment (including assignments such as +=, *=,
etc). While it is not meant to be a replacement for the
scripting language itself, it embodies almost all the
functionality of the main scripting language, and provides
additional flexibility and extensibility to the language. All
ASL blocks must be housed in cases, and are therefore
dependent on the operation of an action, trigger or reflex. So
while the ASL is a powerful, flexible element of the
scripting language, it cannot operate on its own.

3.4 Engine Support Features

The MRScript has several features that enhance not
only the script-writers abilities, but also enhance operation
of the scripts themselves.

 3.4.1 System Calls

Before ASL was defined, complex functions such as
distance calculation, etc, were done using system calls.
These still exist, and still have usage; their implementation
is pure Java, and so they operate much faster than the
doubly-interpreted ASL code (it is an interpreted language
inside an interpreted language).

System calls may take arguments in the form of
variables or text, and generally return some form of state
variable containing the result sought. For example, the
distance calculation %getDistance will return a state
variable that contains the distance between two locations
arguments provided in its call.

 3.4.2 Dynamic References
One of the most powerful aspects of the scripting

language is the ability to use real-time dynamic reference
resolution. A reference is a scripting language construct that
refers to a particular state variable, returning the value
contained within the variable itself. For example, a state
variable foo may contain the text “bar”. The syntax {@foo}
in the appropriate expression/text will cause {@foo} to be
replaced with “bar” when the expression/text is evaluated.
Instances where this activity is most easily observed occur
in communiques: an agent may refer to itself using
{@SELF} to obtain its own name, which can then be used
in conjunction with other command keywords to perform
some function on a client engine (example: “{@SELF}
show model” for an agent named Foo will cause “Foo show
model” to be transmitted to some client element – perhaps a
graphics client is the intended recipient).

The true power of this can be witnessed in the ability to
form state variable names from other references. For
example, if an agent contains the state variable foo = “bar”,
and another state variable bar1 = “10”, the result of
{@{@foo}1} will be {@bar1}, which will then be resolved
to bar1's value: “10”. All references are resolved at run-
time, and are therefore completely dynamic. If foo's value
were to change in the above example, the change would be
reflected in the next evaluation of {@{@foo}1}. This
resolution capability is available in both normal scripting
and ASL.

 3.4.3 Resolution System and Caching

All references must eventually be resolved into basic
state variables. {@{@foo}1} contains not only an internal
reference to foo, but (with foo = “bar”) is a reference to
bar1. The internal reference is termed monotonic, since it
can be directly linked to a state variable. The whole
reference is a compound reference, since it is composed of
an internal reference – the fact that it also contains
additional text is irrelevant. The construct {@{@foo}} -->
{@bar} is perfectly valid.

Since all references must eventually break down into
monotonic references, these references can be cached. Also,
textual elements that contain a single monotonic state
variable reference (a very common occurrence) are also
cached, since they are effectively returning only the contents
of a state variable instead of the state variable itself. During
some tests of a complex script (one containing over 100
agents and heavily utilizing not only ASL but the full
capability of dynamic resolution), caching of known
monotonic state variables and text containing only a single
monotonic state variable showed between 60-70% cache
hits, which resulted in a significant decrease in the time
spent resolving the state variables themselves. The cache
system uses two hash maps: one for monotonic state
variables, and one for textual-based monotonic references.

3.5 ASL Virtual Machine

The ASL is compiled at runtime and executed when
required using the ASL Virtual Machine. This is a very
simple machine that has a program counter and two status

flags. All references are resolved using the real-time
dynamic resolution system (the caching system provides an
enormous benefit to ASL in this regard). There are only a
few operations available within the ASLVM; these are
compare, assign, jump and no-op. Instructions are executed
synchronously, and only one ASL block is executed at a
time. At present, this limited VM’s capabilities seem
sufficient to provide the functionality of the C/Java-style
language constructs described above.

The virtual machine throws a Machine Exception if
dynamic resolution fails or an operand’s syntax is invalid.
This allows graceful failure of the system to occur via the
try … catch mechanism of Java.

3.6 AI Plug-in

Agents can use various artificial intelligence (A.I.)
algorithms available through a common, plug-in interface.
This interface encapsulates the algorithm, insulating its
implementation details from the client agent. An agent
interacts with a given algorithm by instantiating it as a type
of component, passing it parameters either by explicit call or
implicit value modification, and activating it either by
system call (explicit) or on an automatic per-iteration basis
(implicit).

The following algorithms may be considered for in-
clusion:

A set of fuzzy logic math functions may be used on any
number of agent state variables. The functions may operate
ignorant of the semantic value of their results. Agents can
set up fuzzy logic curves, either by parameter or by truth -
table specification.

An IHO (feedback optional) neural net maps I input
nodes through H hidden nodes and results in O outputs. The
inputs and outputs can be represented as real numbers,
integer numbers, or Boolean values. Neural net training may
take place with back propagation, which should occur off‐
line (outside normal simulation operation). However, it may
be useful to provide a back propagation training function for
real-time operation, whereby expected outputs are provided
and adjusted within the network. All interfaces with the
network should take place at its inputs and outputs only.
Internal net structure should not be visible to the agent.

An ANT algorithm may be used for navigation, but
might also be (experimentally) applied to behaviors. Given a
choice of paths, an ANT algorithm uses shared knowledge
about the environment, as well as other heuristic variables,
to make a choice. The applicable choices may represent any
number of things, including (but not limited to)
environmental navigation, behaviors, and agent interaction
choices.

Genetic Algorithms can provide a behavior or a set of
characteristics represented by a genetic sequence. This may
be passed on to child agents in a mutated form, to produce
new behaviors or combinations of characteristics. Also, an
agent may mutate its own genetic sequence to promote new
or different behaviors. In most cases, genetic sequences are
subject to a fitness function, which weeds out poor
candidates for future evolution, and replicates (with and

without mutation) those remaining candidates. The result is
a population changing towards the trend of the fitness
function. This may be represented with a system call made
by the system after n iterations, whereby agents are created
and destroyed as needed. Otherwise, an agent’s genetic
sequence may be modified to establish a new behavior or set
of attributes in that agent, thereby preserving the agent,
simply changing its internal characteristics parametrically.

Stimulus responses perform the task of absorbing
stimuli, categorizing them, and responding. This may be
represented by one or more of the above algorithms. An
agent may utilize a classification/stimulus-response
algorithm to learn about its environment, and react
accordingly to changing environmental stimuli.
Categorization refers to a storage technique whereby
generalizations can occur, allowing the agent to react
appropriately to new situations.

4. THE PROTOCOL
4.1 Client Connections

Client elements connect with MRScript and the
connections are placed in a holding queue until the system is
ready to initialize and add the connections to the list of
active connections. A connection is inactive if it cannot
receive communications via agents. Connections are made
active only when the system is in a stopped state. Our
experiments with auto-restarting the system (this involves
an automated stop-start procedure) has shown that clients
that connect in the midst of a system iteration are
successfully picked up during the next recycling of the
system. The purpose of this is to ensure that client elements
are never forced into an unsafe, unstable, or confusing mode
since in many cases commands build on other commands, or
within a sequence of commands have semantic meanings
that is compromised by allowing arbitrary connection times.

Once a client connects with the system, it transmits its
name and waits for commands from MRScript. Since each
client element has a name, the script can issue commands to
particular client elements, or groups of elements. The
communication system utilized by the scripting engine is
buffered to ensure that the iteration of the system does not
suffer from non-responsive clients, and is fail-safe in the
case that clients drop off in the midst of system operation.
These features, as well as the ability to easily define new
client element protocols for different types of clients, make
the communication system robust and effective.

4.2 Commands and Controls

It was discovered in an earlier version of the scripting
engine that fine-grained control of graphical and audio
representations of agents on client elements caused a severe
network clog; messages were being transmitted too often,
and the format of the data was unwieldy for such purposes.
A solution has been to separate the command data from the
control (physics) data.

Command data is now a textual stream containing only
command statements, which modify the state of client
elements or agents represented on them. Control data is a
representation of the physics data intrinsic to every agent in

MRScript. For example, the agent's location and orientation
are two vital elements that are updated frequently in the case
of fast moving agents (flocking fish are an excellent
example of agents having this property). Control data may
also contain linear and angular velocity/acceleration, to
allow client elements to simulate agent movement at a rate
faster than the transmission of control data. Control data
transmissions are not linked explicitly to the iterative nature
of the scripting engine, and so their granularity can be
controlled independent of per-iteration update times.

An agent representation on a client element may use
any control data transmitters (control sources) as issued by
the scripting engine. MRScript operates as an intrinsic
control source for all agents defined in it. Typically, the
agent representations will connect to MRScript for their
control data. They may, however, also connect to external
control sources such as tracked sensors, other simulation
systems, etc, so long as those systems implement the control
data protocol. This means that agent representations (such as
the user's view on a graphics client element) can be directly
controlled (in terms of location and orientation) by tracked
sensors mounted on a head-mounted display, for example.

A playful use of associating a tracking device with a
model might be if we wished to place a fish head on one of
the participants. The midpoint between the eyes of the fish
model could be associated with the position of the tracker
mounted on the HMD (or it might be placed slightly in front
and below to align just in front of the user’s eyes). As the
user moves his or her head, the fish model would move in
unison. If the model is done with one-sided polygons, the
user is unaware of the joke, but all other users see the fish
head instead of the human head. The fish nods, shakes and
moves with its tracked user.

Other examples could include placing a virtual object in
a tracked moving vehicle or placing a futuristic weapon
model on top of a tracked replica of a weapon being carried
by the user.

5. QUICK OVERVIEW OF CLIENTS

The graphics and audio clients of our MR System
employ a peer-to-peer strategy as regards their relation to
MRScript. By this we mean that each agent managed by the
scripting system that affects the visual presentation, e.g.,
those having a visual representation, whether virtual or real,
has a peer in the graphics engine. Similarly, those with aural
properties, e.g., virtual people having walking sounds when
they move, have audio engine peers. These relationships are
established via commands such as can be seen in the init
script for the Rover object (Figure 2) used in our MR Sea
Creatures experience (Figure 3).

The agent tag specifies the agent’s name, Rover, and
the fact that it is model, which means it has associated
geometry. The init tag means that these actions will occur at
the start of the experience. The gfxcommands are sent to
graphics engines; the audcommands are sent to audio
engines.

The first graphics command tells the system agent in
the graphics engine to make the Rover character. The
graphics Rover character is then told to set its model

according to the file “MRSC_rov.rov.” We are assuming
that the location of this file can be found because a previous
script for the MRScript system agent already instructed the
graphics engine to create a world object and to load a
package that identifies the location of assets, such as this
model, that will be used to visualize objects in this world.
The world object is then instructed to add the Rover agent to
itself. Finally, the world is told to show the Rover. The
hold=”n” parameter means that this is an asynchronous
command; the script engine does not wait for a report back
that the Rover has been shown. Other commands, such as
creating the peer agent, are synchronous.
<agent name="Rover" type="model">
 <init>
 <!--create Rover-->
 <gfxcommand>system make {@SELF} as
 character</gfxcommand>
 <gfxcommand>{@SELF} set character
 MRSC_rov.rov</gfxcommand>
 <gfxcommand>world add agent
 {@SELF}</gfxcommand>
 <gfxcommand hold="n">world show
 {@SELF}</gfxcommand>

 <audcommand>system make {@SELF} as
 character</audcommand>
 <audcommand>Surround show
 {@SELF}</audcommand>
 <audcommand hold="n">{@SELF} loop
 MRSC_audio.rov</audcommand>
 </init>
</agent>

Figure 2. Init script for Rover agent

The audio commands are similar, although not typically
as complex. The interesting thing here is that the Rover
audio peer is a “surround” sound and that it has an
associated sound file “MRSC_audio.rov” that loops until
instructed to stop. By associating this sound with the Rover,
its position is bound to that of the Rover. Achieving this
positional audio is a major characteristic of our system. We
do so by expecting the user to tell us where the speakers are
located. This placement is used as a constraint for
determining how to balance the sounds between speakers.
With this scheme, we can deliver multi-tiered audio that
users can perceive as moving vertically as well as
horizontally.

6. MR SEA CREATURE EXPERIENCE

The MR Sea Creatures experience was installed at the
Orlando Science Center from October 4-23, 2004. During
this time,it ran from 10:00AM to 8:00PM, with none of our
staff on-site. Start-up was done by OSC staff members
merely by booting up the three machines we provided.
Shutdown required then to run a single script on one system.

These machines all had 2GHz P4’s with 512MB of
main memory. One was a single processor Win/XP system
that ran the audio engine. The second and the third were
dual processor Xeon’s Slackware 10.0 Linux systems; one
ran the script engine, the HUD and a physics engine; the
other ran the graphics engine with video capture coming
from a mounted digital camera, along with a mouse server.

Figure 3 shows the view of the center from the MR
Dome. The structure, redeployed from an exhibit we built
for SIGGRAPH 2003, covers up the computers and some of
the speakers (others are mounted hanging from the ceiling
behind the users). In this figure, you can see several children
in the museum (the real scene is captured by a camera
mounted on the other side of the dome enclosure). Virtual
objects include a Rover (2/3 up middle of image), an
elasmosaur (long lizard-like creature on mid right side) and
some smaller Cretaceous period sea life. As we previously
captured the static objects in the real area, we use “occlusion
models” of to partially occlude virtual objects that pass
behind real objects like support poles and display cases.

The console was designed specifically for this
experience. It provides a HUD (Heads Up View) of the
world from the perspective of the Rover, whose position
you control with a track ball and an up/down button. This
display also shows a radar screen that indicates the position
of objects of interest around you. When you get close
enough to one of these, the HUD view is replaced by an
information panel about the discovered object.

Figure 3. Cretaceous life at Orlando Science Center.

Figure 4 shows the back of the dome from a perspective
within the museum exhibit. The camera that captures the
real assets of the museum is mounted at the top middle of
the back side, out of harm’s way.

Figure 4. MR Dome from back side.

6.1 Successes and Failures
The software system ran cleanly, with a few camera

driver glitches that resolved with a restart. The merging of
real and virtual was a thrill for children who often became
the objects being captured in their friends’ experiences, once
they realized what was happening. The interface worked
terrifically with gamers and children in the middle school
years (12-14). Younger children (4-11) tended to consume
the experience; adults were confused by the interface unless
taught by their children. Avid gamers teamed up (one
controlled the track ball and the other the up/down buttons)
in order to be successful at finding all objects of interest.
The inexpensive flat screen we used for the console was a
poor choice as it did not allow observers to see those details
of the experience.

7. FUTURE WORK

We have recently added the concept of Auxiliary
Physics Engines (APE). These engines operate through the
network and can be dynamically added. The original
motivation for these auxiliary engines was to solve the
problem of calculating trajectories and then determining
what objects are intersected by a given trajectory. Such a
computation is clearly needed in experiences where
weapons are fired, but it also needed in experiences where
objects are selected by pointing.

In our previous versions of the MR system, we
delegated trajectory computation to the graphics engine
where this can be done very efficiently. We then had the
story engine sort the intersected objects by distance from the
selection device (e.g., gun). The story engine could then
determine the semantics of an object being selected, and use
the order of intersection to handle such things as bullets
hitting walls before encountering vulnerable objects. Our
first thought with our new design was to move this
trajectory computation onto the scripting engine. However,
since MRScript is written in Java and is already handling
script interpretation and all experience oversight, we
encountered unacceptable delays.

In the interest of flexibility and speed, we designed the
notion of APEs and specified a common interface that
supports trajectory computation, path planning (with
optional collision detection), line-of-sight calculation and
other, as yet undetermined, model-based services. In our
first use of an APE, we employed the graphics engine as a
provider of trajectory services; in this case the operation
matches that of our older implementations.

Our goal now is to expand our experiments to employ
dedicated APE service providers (computational
workhorses). Each APE may provide a subset of basic
services and some additional set of advanced features. APEs
must support reflection (a method that reports the list of all
services provided by this particular APE), so a potential
user, e.g., agent, can determine if a given APE meets its
requirements. APEs must also respond to a request to
determine their current workloads. This can be used to do
load balancing for complex large MR worlds.

Beyond the specific extension of MRScript with APEs
and new AI plug-ins, our primary future efforts are focused

on creating an “authoring by example” user interface [2][6].
In general, we wish to support the notion of an MR Backlot,
with all sorts of reusable virtual assets and model behaviors
that can be easily accessed, understood and employed in the
authoring of new experiences.

ACKNOWLEDMENTS

This research was conducted within the Mixed Reality
Audio research test bed at the University Central Florida’s
Media Convergence Laboratory, a partnership of the
College of Arts and Sciences, School of Computer Science,
and the Institute for Simulation and Training. The research
is in participation with the Research in Augmented and
Virtual Environments (RAVES) supported by the Naval
Research Laboratory (NRL) VR LAB. It is also supported
by the U.S. Army’s Science and Technology Objective
(STO) Embedded Training for Dismounted Soldier (ETDS)
at the Research, Development and Engineering Command
(RDECOM). Collaborative research and an ongoing
dialogue are taking place with the Army Research Institute
(ARI) at the Science and Technology Testing Center
(STTC) in Orlando, Florida. Finally, special thanks are due
to Nathan Selikoff for his being the first user / lab rat of this
engine and to the Mixed Reality Laboratory, Canon Inc., for
their generous support and technical assistance.

REFERENCES
[1] AMIRE Consortium. 2004. Amire - Authoring Mixed

Reality. [Online]. Available: http://www.amire.net/
[November 18, 2004].

[2] Cypher, A. 1993. Watch What I Do. MIT Press,
Cambridge, MA.

[3] Haringer, M. and Regenbrecht H. T. 2002. “A
Pragmatic Approach to Augmented Reality Authoring.”
In Proceedings of the First IEEE International
Augmented Reality Toolkit Workshop (Darmstadt,
Germany, Dec. 29). IEEE, Piscataway, NJ, 237-245.

[4] Hughes, C. E.; Stapleton, C. B.; Micikevicius, P.;
Hughes, D. E.; Malo, S.; O’Connor, M. 2004. “Mixed
Fantasy: An Integrated System for Delivering MR
Experiences.” In Proc. of VR Usability Workshop
(Nottingham, England, Jan. 22-23). [Online]. Available:
http://www.view.iao.fraunhofer.de/Proceedings/
[November 18, 2004].

[5] Hughes, C. E.; Smith, E.; Stapleton, C. B.; Hughes, D.
E. 2004. “Augmenting Museum Experiences with
Mixed Reality.” In Proc. of Knowledge Sharing and
Collaborative Engineering (St. Thomas, US Virgin
Islands, Nov. 22-24), ACTA Press, Calgary, Canada.

[6] Lieberman, H. 2001. Your Wish is My Command.
Morgan Kaufmann, San Francisco, CA.

[7] Walt Disney Imagineering. 2004. Panda3D. Available
[Online]. Available: http://www.etc.cmu.edu/panda3d/
[November 18, 2004].

[8] Zauner, J.; Haller, M.; Brandl, A.; Hartmann, W. 2003.
“Authoring of a Mixed Reality Assembly Instructor for
Hierarchical Structures.” In 2nd International
Symposium on Mixed and Augmented Reality (Tokyo,
Japan, Oct. 7-10), IEEE, Piscataway, NJ, 237-246.

	ABSTRACT
	3.3 The Advanced Scripting Language (ASL)
	3.4 Engine Support Features
	3.4.1 System Calls
	3.4.2 Dynamic References
	3.4.3 Resolution System and Caching

	3.5 ASL Virtual Machine
	3.6 AI Plug-in
	4. THE PROTOCOL
	4.1 Client Connections
	4.2 Commands and Controls

