
Authoring and Delivering Mixed Reality Experiences 
 

Matthew O’Connor 
Media Convergence Laboratory 

Institute for Simulation and Training 
University of Central Florida 

 

Charles E. Hughes  
Media Convergence Laboratory 

School of Computer Science 
University of Central Florida 

  
Keywords: Mixed reality, scripting, interactive experiences. 
 
ABSTRACT 

Mixed Reality (MR) offers a unique challenge in 
integrating interacting agents, show-control devices, 
graphics and audio presentation, and human interaction into 
a single consolidated system.  While each component may 
be addressed individually, combining their various 
functionalities via a dynamic script that delivers an 
interactive, non-linear story (scenario, world) requires a 
robust process and system.  In this paper, we present a 
scripting engine and an XML-based language that allows an 
author to interface human interaction with the other 
elements of an MR experience.  The engine and language 
allow for a wide range of functionality, including real-time 
binding of variables, interaction with external engines (such 
as graphics and audio) and sensors/actuators (such as 
tracking and special effects), a pluggable interface for 
autonomous interacting agents, a simple integrated physics 
engine, and a common architecture for expressing actions 
that have graphical and auditory representations. We exhibit 
the functionality of flexibility of our system through two 
major scenarios: a training exercise and an exploratory 
experience that we demonstrated at a science center in fall, 
2004. 
 
1. INTRODUCTION 

Current systems for Mixed Reality authoring are 
suitable for creating visually-based augmented reality 
applications. In particular, the AMIRE system [1] provides a 
family of components that address issues such as tracking, 
registration, video capture and rendering. Their audio library 
is focused on delivery of standard clips, not on 3d 
immersion. This system has served as the basis for creating 
user-friendly environments for authoring specific 
application from within the real world that is being 
augmented [3][8].  

Panda3D provides a scene graph-based rendering 
system along with a procedural authoring environment. This 
procedural language includes commands for manipulating 
the scene graph, sending and receiving messages, playing 
audio files, scheduling tasks and controlling behaviors by 
finite state machines and Python methods [7]. 

In contrast to the capabilities provided by these and 
other existing systems, our goal is a system that supports the 
creation and delivery of the full range of Mixed and Virtual 

Reality experiences from augmented reality to augmented 
virtuality to pure virtual; from mixed audio-visual-SFX to 
pure audio to pure visual; from reactive and preplanned 
behaviors to AI-based behaviors. Our initial approach, 
prototyped in various versions during 2002 and 2003 [4], 
provided the design of a system comprised of cooperating 
engines (story, graphics, audio and special effects), with the 
story engine being the central component, the only one that 
deals with the semantics of actions – the other engines 
primarily provide services, such as visualization and 
auralization (Figure 1). These earlier story engines required 
that experiences be authored in Java, whereas the system 
reported here uses an agent-based approach, with behaviors 
describable in XML scripts or via AI plug-ins. Finally, our 
older systems, while providing platform independent story 
and special effects engines, were tied to Linux for graphics 
and to Windows for audio. All engines in the current version 
run on Linux and Windows. We also believe that MacOS 
compatibility will be easy to achieve, although we have not 
tested this as yet. 

The focus of this paper is on the story/scripting engine.  
Separate papers deal with the audio engine and the process, 
rather than the technology, of creating stories. 

 
2. THE MR SCRIPTING ENGINE 
2.1 Overview 

The MR Scripting Engine (MRScript hereafter) is a 
platform for developing experiences that involve multiple 
interactive system elements. These elements include, but are 
not limited to, graphics, audio, and show-control devices. 
MR Script’s objective is to provide a linking, 
synchronizing/control, and agent/actor support mechanism 
for utilizing these elements in an interactive environment. 
Environments that are candidates for using MRScipt include 
those delivering interactive story-telling experiences, 
technology demonstrations, games, and educational or 
training programs. The experiences can involve full or 
partial mixed-reality, but do not necessarily have to be 
visual – pure aural experiences can and have been 
developed/delivered with MRScript. The basic structure of 
MRScript allows multiple elements to connect and be 
utilized for the realization of any number of such 
environments, whether shared or stand-alone.  

Besides linking and synchronizing diverse sensory 
components, MRScript operates as the nerve center for all 
artificial intelligence, scripted, and user-interactive 



behavior. It is the focal point for a user's interactions, and 
allows environments and experiences to be developed using 
any level of artificial intelligence or scripting that is 
appropriate to achieve a particular goal. The simplest means 
by which MRScript provides behaviors is through its 
scripting language. This language was originally conceived 
to support only the simplest of pre-scheduled and reactive 
behaviors, but it has already been used to successfully 
perform surprisingly complex tasks, ones that we had 
originally expected would be handled by AI plug-ins. This 
flexibility was possible due to the language’s easy 
extensibility, which was a primary design goal.  
 

 
Figure 1. Integration of MR system 

2.2 Engine Specifics 
An experience that is delivered by MRScript starts 

when all the system elements required to support the given 
experience connect to the scripting engine. Once these 
elements connect, the experience loaded by the engine may 
begin to take form. This happens with direct interaction 
between MRScript and its client elements; each client 
element can be communicated with explicitly, or in 
broadcast communication, and each can reply appropriately 
to MRScript with necessary information or user interactions. 

 
2.2.1 Components  

MRScript is composed of various parts: the main 
engine, a physics engine, a real-time dynamic reference 
resolution system, an Advanced Scripting Language 
interface (ASL), and client networking support. The 
elemental construct that the engine is based on is interacting 
agents. Agents are the definitive elements for a given script. 
Each agent contains intrinsic elements, such as physics 
characteristics, that allow for a common interface with the 
system. Agents may or may not have representation on 
external client elements that connect during runtime (for 
example, an agent may exist as a sound on one client 
element, but have no graphical representation – this is 
perfectly valid).  

Within agents, behaviors of three flavors are available: 
actions, triggers, and reflexes. Each agent also has a set of 
state variables, which describes the agent's state at any given 
time (these are akin to static variables in a normal 

programming context, the only real difference being that 
state variables are normally updated once at the end of each 
iteration, rather than at the moment of each assignment or 
mathematical operation). Agents may also execute 
initialization commands for new client elements that 
connect.  These are explicitly defined in an initialization 
block.  

The script is used to define agents for the scripting 
engine. Scripts may be composed of several component 
script files, which may include other component files and be 
included by the main script file. This allows components to 
be generated and dropped in for usage in any given script. 
Scripts generally define not only agents, but regional 
information that can be used with the physical location of 
agents to provide semantic value to their location, or 
enable/disable features of certain agents, etc.  

 
2.2.2 Engine Operation  

The engine operates on an iterative basis. That is, 
operations on state variables, transmission of signals, etc, is 
carried out once all agents have operated. Therefore, there 
are two stages to the operation of the engine during normal 
running conditions: update, and operate. The update stage 
forces state variables to update their values to whatever 
changed values were stored in the midst of the last operation 
cycle; it also copies signals that were queued up during the 
most recent operating cycle to an operating queue that is 
used during the next iteration (note that this ensures that 
signals received during one iteration must wait for the next 
iteration before they can be acted upon). Finally, the update 
stage makes internal system elements such as the system 
clock current. The operate stage causes agents to evaluate 
any signals received, to evaluate any triggers that have fired, 
and to operate reflexes (triggers and reflexes are discussed 
in the next section). At the end of this stage, the agent's 
physics attributes are subject to the physics engine, which 
considers such things as linear and angular 
velocity/acceleration when updating the agent's physical 
characteristics. See Table 1 for attributes that can be 
controlled by the physics engine.  

Various special signals are used to notify agents of 
certain system activities. The START signal is transmitted 
to all agents when the system starts iterating. The STOP 
signal is transmitted when a stop is requested, after which 
agents have five iterations to act on the signal before 
iterating ceases. Various other signals are used to signal 
particular agents (the SYSTEM agent is one such agent) of 
events, such as mouse-movement, button presses, etc.  

 
3. RUNNING AN EXPERIENCE 
3.1 Interacting with Client Elements  

The system can be operated in one of two modes: GUI 
and Console. The GUI mode displays an interactive 
graphical user interface that can be used to start, stop, pause, 
step, and communicate with the system (or any connected 
client elements). The Console mode starts system iteration 
as soon as all specified client elements have connected. 
Note that no a priori number of elements is required in order 
for iteration to occur in either the GUI or Console modes. 



Console mode has no direct interactive system, so the script 
is basically left to its own devices when the system is run in 
this manner. The motivation for this was deployment of 
experiences, where the system would be required to operate 
completely autonomously.  

Table 1. Settable attributes controlled by physics engine. 
Element Parts Units 
.location .x .y .z 

 
mm 

.orientation .yaw .pitch .roll ° 

.linearVelocity .x .y .z 
 

mm/s 

.linearAcceleration .x .y .z 
 

mm/s2

.angularVelocity .yaw .pitch .roll °/s 

.angularAcceleration .yaw .pitch .roll °/s2
 
3.2 Scripting Fundamentals  

Communication among agents is one of the 
fundamental requirements for a system involving interacting 
agents. The goal is, of course, to allow a collection of agents 
to act as a whole, or interact in an interesting manner. To 
fully understand how this is accomplished in MRScript, we 
will explore how agents are created by the script writer.  

Agents are defined by state variables, actions, triggers 
and reflexes. The three behaviors (actions, triggers, 
reflexes) all may contain multiple cases, each of which 
include guards, results, and commands. A guard ensures 
that certain state variable conditions are met before the case 
is allowed to evaluate its results or commands. A case may 
have zero guards, in which case its results and commands 
are always evaluated. Results are used to change state 
variable values, either using explicit setting of values, or 
arithmetic operations and expressions. Commands are the 
communication mechanism for the agent, in the scripting 
language: communiques are the only form of 
communication among the agents themselves, whereas 
graphics, audio and show-control commands are used to 
trigger actions on connected client elements (for example, 
an agent's action may cause a movie to play on a graphics 
element). A third class, whose members are known as 
system commands, are available for scripting-engine-
specific interaction (such as debug enabling). Advanced 
Scripting Language (ASL) blocks are considered to be 
results, due to their functionality.  Details of ASL are given 
later in this paper.  

Actions are behaviors that must be explicitly triggered 
by a signal. Signals (known as communiques in the scripting 
language) are the primary method for agent interaction, both 
among themselves and with the engine itself (the engine has 
an intrinsic system agent that allows us to use a common 
interface for invoking its activities). Once an action has 
been triggered by a signal, it is evaluated the next iteration 
that the agent is operated upon.  

Triggers are based on the operating time of the 
experience, as maintained by the scripting engine. A trigger 
is tripped when its time value is exceeded by the scripting 
engine's system clock (this clock tells time relative to the 
start of system iteration – if the system becomes paused, the 
clock also pauses and continues precisely where it left off 
when the system starts running again). Triggers can be reset 
automatically, or be one-shot triggers that must wait until 
the system is restarted before they can be used again. The 
time value they are based on can be dynamic.  

Reflexes operate during every iteration, and can be used 
to check for certain state variable conditions; this is the 
motivation for their existence. Once a reflex's guards are all 
enabled (evaluate to true), its results and commands are 
executed. This is perhaps the most expensive behavior 
element of the three, since extensive evaluation may take 
place. However, it can be extremely useful for scanning for 
changes in state, or updating state variables per some 
formula, etc.  

 
3.3 The Advanced Scripting Language (ASL)  

ASL was inspired by the need for extended 
functionality, such as flow-control, real-time updating and 
evaluating of state variables (i.e., in the midst of a single 
iteration), and loops. ASL uses a very rudimentary form of 
the language structure found in C and Java. It allows the use 
of all references, dynamic state variable reference 
generation (described below) and all interaction capable 
with the normal scripting constructs.  

The programming elements ASL defines are: if, for, 
goto and assignment (including assignments such as +=, *=, 
etc). While it is not meant to be a replacement for the 
scripting language itself, it embodies almost all the 
functionality of the main scripting language, and provides 
additional flexibility and extensibility to the language. All 
ASL blocks must be housed in cases, and are therefore 
dependent on the operation of an action, trigger or reflex. So 
while the ASL is a powerful, flexible element of the 
scripting language, it cannot operate on its own.  

 
3.4 Engine Support Features  

The MRScript has several features that enhance not 
only the script-writers abilities, but also enhance operation 
of the scripts themselves.  

 
 3.4.1 System Calls  

Before ASL was defined, complex functions such as 
distance calculation, etc, were done using system calls. 
These still exist, and still have usage; their implementation 
is pure Java, and so they operate much faster than the 
doubly-interpreted ASL code (it is an interpreted language 
inside an interpreted language).  

System calls may take arguments in the form of 
variables or text, and generally return some form of state 
variable containing the result sought. For example, the 
distance calculation %getDistance will return a state 
variable that contains the distance between two locations 
arguments provided in its call.  

 



 3.4.2 Dynamic References  
One of the most powerful aspects of the scripting 

language is the ability to use real-time dynamic reference 
resolution. A reference is a scripting language construct that 
refers to a particular state variable, returning the value 
contained within the variable itself. For example, a state 
variable foo may contain the text “bar”. The syntax {@foo} 
in the appropriate expression/text will cause {@foo} to be 
replaced with “bar” when the expression/text is evaluated. 
Instances where this activity is most easily observed occur 
in communiques: an agent may refer to itself using 
{@SELF} to obtain its own name, which can then be used 
in conjunction with other command keywords to perform 
some function on a client engine (example: “{@SELF} 
show model” for an agent named Foo will cause “Foo show 
model” to be transmitted to some client element – perhaps a 
graphics client is the intended recipient).  

The true power of this can be witnessed in the ability to 
form state variable names from other references. For 
example, if an agent contains the state variable foo = “bar”, 
and another state variable bar1 = “10”, the result of 
{@{@foo}1} will be {@bar1}, which will then be resolved 
to bar1's value: “10”. All references are resolved at run-
time, and are therefore completely dynamic. If foo's value 
were to change in the above example, the change would be 
reflected in the next evaluation of {@{@foo}1}. This 
resolution capability is available in both normal scripting 
and ASL.  

 
 3.4.3 Resolution System and Caching  

All references must eventually be resolved into basic 
state variables. {@{@foo}1} contains not only an internal 
reference to foo, but (with foo = “bar”) is a reference to 
bar1. The internal reference is termed monotonic, since it 
can be directly linked to a state variable. The whole 
reference is a compound reference, since it is composed of 
an internal reference – the fact that it also contains 
additional text is irrelevant. The construct {@{@foo}} --> 
{@bar} is perfectly valid.   

Since all references must eventually break down into 
monotonic references, these references can be cached. Also, 
textual elements that contain a single monotonic state 
variable reference (a very common occurrence) are also 
cached, since they are effectively returning only the contents 
of a state variable instead of the state variable itself. During 
some tests of a complex script (one containing over 100 
agents and heavily utilizing not only ASL but the full 
capability of dynamic resolution), caching of known 
monotonic state variables and text containing only a single 
monotonic state variable showed between 60-70% cache 
hits, which resulted in a significant decrease in the time 
spent resolving the state variables themselves. The cache 
system uses two hash maps: one for monotonic state 
variables, and one for textual-based monotonic references.  

 
3.5 ASL Virtual Machine  

The ASL is compiled at runtime and executed when 
required using the ASL Virtual Machine. This is a very 
simple machine that has a program counter and two status 

flags. All references are resolved using the real-time 
dynamic resolution system (the caching system provides an 
enormous benefit to ASL in this regard). There are only a 
few operations available within the ASLVM; these are 
compare, assign, jump and no-op. Instructions are executed 
synchronously, and only one ASL block is executed at a 
time. At present, this limited VM’s capabilities seem 
sufficient to provide the functionality of the C/Java-style 
language constructs described above.  

The virtual machine throws a Machine Exception if 
dynamic resolution fails or an operand’s syntax is invalid.  
This allows graceful failure of the system to occur via the  
try … catch mechanism of Java. 
 
3.6 AI Plug-in  

Agents can use various artificial intelligence (A.I.) 
algorithms available through a common, plug-in interface. 
This interface encapsulates the algorithm, insulating its 
implementation details from the client agent. An agent 
interacts with a given algorithm by instantiating it as a type 
of component, passing it parameters either by explicit call or 
implicit value modification, and activating it either by 
system call (explicit) or on an automatic per-iteration basis 
(implicit).  

The following algorithms may be considered for in-
clusion:  

A set of fuzzy logic math functions may be used on any 
number of agent state variables. The functions may operate 
ignorant of the semantic value of their results. Agents can 
set up fuzzy logic curves, either by parameter or by truth -
table specification. 

An IHO (feedback optional) neural net maps I input 
nodes through H hidden nodes and results in O outputs. The 
inputs and outputs can be represented as real numbers, 
integer numbers, or Boolean values. Neural net training may 
take place with back propagation, which should occur off‐
line (outside normal simulation operation). However, it may 
be useful to provide a back propagation training function for 
real-time operation, whereby expected outputs are provided 
and adjusted within the network. All interfaces with the 
network should take place at its inputs and outputs only. 
Internal net structure should not be visible to the agent.  

An ANT algorithm may be used for navigation, but 
might also be (experimentally) applied to behaviors. Given a 
choice of paths, an ANT algorithm uses shared knowledge 
about the environment, as well as other heuristic variables, 
to make a choice. The applicable choices may represent any 
number of things, including (but not limited to) 
environmental navigation, behaviors, and agent interaction 
choices.  

Genetic Algorithms can provide a behavior or a set of 
characteristics represented by a genetic sequence. This may 
be passed on to child agents in a mutated form, to produce 
new behaviors or combinations of characteristics. Also, an 
agent may mutate its own genetic sequence to promote new 
or different behaviors. In most cases, genetic sequences are 
subject to a fitness function, which weeds out poor 
candidates for future evolution, and replicates (with and 



without mutation) those remaining candidates. The result is 
a population changing towards the trend of the fitness 
function. This may be represented with a system call made 
by the system after n iterations, whereby agents are created 
and destroyed as needed. Otherwise, an agent’s genetic 
sequence may be modified to establish a new behavior or set 
of attributes in that agent, thereby preserving the agent,  
simply changing its internal characteristics parametrically.  

Stimulus responses perform the task of absorbing 
stimuli, categorizing them, and responding. This may be 
represented by one or more of the above algorithms. An 
agent may utilize a classification/stimulus-response 
algorithm to learn about its environment, and react 
accordingly to changing environmental stimuli. 
Categorization refers to a storage technique whereby 
generalizations can occur, allowing the agent to react 
appropriately to new situations.  

 
4. THE PROTOCOL 
4.1 Client Connections  

Client elements connect with MRScript and the 
connections are placed in a holding queue until the system is 
ready to initialize and add the connections to the list of 
active connections. A connection is inactive if it cannot 
receive communications via agents. Connections are made 
active only when the system is in a stopped state. Our 
experiments with auto-restarting the system (this involves 
an automated stop-start procedure) has shown that clients 
that connect in the midst of a system iteration are 
successfully picked up during the next recycling of the 
system. The purpose of this is to ensure that client elements 
are never forced into an unsafe, unstable, or confusing mode 
since in many cases commands build on other commands, or 
within a sequence of commands have semantic meanings 
that is compromised by allowing arbitrary connection times.  

Once a client connects with the system, it transmits its 
name and waits for commands from MRScript. Since each 
client element has a name, the script can issue commands to 
particular client elements, or groups of elements. The 
communication system utilized by the scripting engine is 
buffered to ensure that the iteration of the system does not 
suffer from non-responsive clients, and is fail-safe in the 
case that clients drop off in the midst of system operation. 
These features, as well as the ability to easily define new 
client element protocols for different types of clients, make 
the communication system robust and effective.  

 
4.2 Commands and Controls  

It was discovered in an earlier version of the scripting 
engine that fine-grained control of graphical and audio 
representations of agents on client elements caused a severe 
network clog; messages were being transmitted too often, 
and the format of the data was unwieldy for such purposes. 
A solution has been to separate the command data from the 
control (physics) data.   

Command data is now a textual stream containing only 
command statements, which modify the state of client 
elements or agents represented on them. Control data is a 
representation of the physics data intrinsic to every agent in 

MRScript. For example, the agent's location and orientation 
are two vital elements that are updated frequently in the case 
of fast moving agents (flocking fish are an excellent 
example of agents having this property). Control data may 
also contain linear and angular velocity/acceleration, to 
allow client elements to simulate agent movement at a rate 
faster than the transmission of control data. Control data 
transmissions are not linked explicitly to the iterative nature 
of the scripting engine, and so their granularity can be 
controlled independent of per-iteration update times.  

An agent representation on a client element may use 
any control data transmitters (control sources) as issued by 
the scripting engine. MRScript operates as an intrinsic 
control source for all agents defined in it. Typically, the 
agent representations will connect to MRScript for their 
control data. They may, however, also connect to external 
control sources such as tracked sensors, other simulation 
systems, etc, so long as those systems implement the control 
data protocol. This means that agent representations (such as 
the user's view on a graphics client element) can be directly 
controlled (in terms of location and orientation) by tracked 
sensors mounted on a head-mounted display, for example.  

A playful use of associating a tracking device with a 
model might be if we wished to place a fish head on one of 
the participants. The midpoint between the eyes of the fish 
model could be associated with the position of the tracker 
mounted on the HMD (or it might be placed slightly in front 
and below to align just in front of the user’s eyes). As the 
user moves his or her head, the fish model would move in 
unison. If the model is done with one-sided polygons, the 
user is unaware of the joke, but all other users see the fish 
head instead of the human head. The fish nods, shakes and 
moves with its tracked user.  

Other examples could include placing a virtual object in 
a tracked moving vehicle or placing a futuristic weapon 
model on top of a tracked replica of a weapon being carried 
by the user. 
 
5. QUICK OVERVIEW OF CLIENTS 

The graphics and audio clients of our MR System 
employ a peer-to-peer strategy as regards their relation to 
MRScript. By this we mean that each agent managed by the 
scripting system that affects the visual presentation, e.g., 
those having a visual representation, whether virtual or real, 
has a peer in the graphics engine. Similarly, those with aural 
properties, e.g., virtual people having walking sounds when 
they move, have audio engine peers. These relationships are 
established via commands such as can be seen in the init 
script for the Rover object (Figure 2) used in our MR Sea 
Creatures experience (Figure 3).  

The agent tag specifies the agent’s name, Rover, and 
the fact that it is model, which means it has associated 
geometry. The init tag means that these actions will occur at 
the start of the experience. The gfxcommands are sent to 
graphics engines; the audcommands are sent to audio 
engines.  

The first graphics command tells the system agent in 
the graphics engine to make the Rover character. The 
graphics Rover character is then told to set its model 



according to the file “MRSC_rov.rov.” We are assuming 
that the location of this file can be found because a previous 
script for the MRScript system agent already instructed the 
graphics engine to create a world object and to load a 
package that identifies the location of assets, such as this 
model, that will be used to visualize objects in this world. 
The world object is then instructed to add the Rover agent to 
itself. Finally, the world is told to show the Rover. The 
hold=”n” parameter means that this is an asynchronous 
command; the script engine does not wait for a report back 
that the Rover has been shown. Other commands, such as 
creating the peer agent, are synchronous. 
<agent name="Rover" type="model"> 
 <init> 
  <!--create Rover-->    
  <gfxcommand>system make {@SELF} as  
      character</gfxcommand> 
  <gfxcommand>{@SELF} set character  
      MRSC_rov.rov</gfxcommand> 
  <gfxcommand>world add agent  
      {@SELF}</gfxcommand> 
  <gfxcommand hold="n">world show  
      {@SELF}</gfxcommand> 
 
  <audcommand>system make {@SELF} as 
      character</audcommand> 
  <audcommand>Surround show 
      {@SELF}</audcommand> 
  <audcommand hold="n">{@SELF} loop  
      MRSC_audio.rov</audcommand> 
 </init> 
</agent> 

Figure 2. Init script for Rover agent 

The audio commands are similar, although not typically 
as complex. The interesting thing here is that the Rover 
audio peer is a “surround” sound and that it has an 
associated sound file “MRSC_audio.rov” that loops until 
instructed to stop. By associating this sound with the Rover, 
its position is bound to that of the Rover. Achieving this 
positional audio is a major characteristic of our system. We 
do so by expecting the user to tell us where the speakers are 
located. This placement is used as a constraint for 
determining how to balance the sounds between speakers. 
With this scheme, we can deliver multi-tiered audio that 
users can perceive as moving vertically as well as 
horizontally. 

 
6. MR SEA CREATURE EXPERIENCE 

The MR Sea Creatures experience was installed at the 
Orlando Science Center from October 4-23, 2004. During 
this time,it ran from 10:00AM to 8:00PM, with none of our 
staff on-site. Start-up was done by OSC staff members 
merely by booting up the three machines we provided.  
Shutdown required then to run a single script on one system. 

These machines all had 2GHz P4’s with 512MB of 
main memory. One was a single processor Win/XP system 
that ran the audio engine. The second and the third were 
dual processor Xeon’s Slackware 10.0 Linux systems; one 
ran the script engine, the HUD and a physics engine; the 
other ran the graphics engine with video capture coming 
from a mounted digital camera, along with a mouse server.   

Figure 3 shows the view of the center from the MR 
Dome. The structure, redeployed from an exhibit we built 
for SIGGRAPH 2003, covers up the computers and some of 
the speakers (others are mounted hanging from the ceiling 
behind the users). In this figure, you can see several children 
in the museum (the real scene is captured by a camera 
mounted on the other side of the dome enclosure). Virtual 
objects include a Rover (2/3 up middle of image), an 
elasmosaur (long lizard-like creature on mid right side) and 
some smaller Cretaceous period sea life. As we previously 
captured the static objects in the real area, we use “occlusion 
models” of to partially occlude virtual objects that pass 
behind real objects like support poles and display cases. 

The console was designed specifically for this 
experience. It provides a HUD (Heads Up View) of the 
world from the perspective of the Rover, whose position 
you control with a track ball and an up/down button. This 
display also shows a radar screen that indicates the position 
of objects of interest around you. When you get close 
enough to one of these, the HUD view is replaced by an 
information panel about the discovered object.  

 

 
Figure 3. Cretaceous life at Orlando Science Center. 

Figure 4 shows the back of the dome from a perspective 
within the museum exhibit. The camera that captures the 
real assets of the museum is mounted at the top middle of 
the back side, out of harm’s way. 

 
Figure 4. MR Dome from back side. 



6.1 Successes and Failures 
The software system ran cleanly, with a few camera 

driver glitches that resolved with a restart. The merging of 
real and virtual was a thrill for children who often became 
the objects being captured in their friends’ experiences, once 
they realized what was happening. The interface worked 
terrifically with gamers and children in the middle school 
years (12-14). Younger children (4-11) tended to consume 
the experience; adults were confused by the interface unless 
taught by their children. Avid gamers teamed up (one 
controlled the track ball and the other the up/down buttons) 
in order to be successful at finding all objects of interest. 
The inexpensive flat screen we used for the console was a 
poor choice as it did not allow observers to see those details 
of the experience.  

 
7. FUTURE WORK 

We have recently added the concept of Auxiliary 
Physics Engines (APE). These engines operate through the 
network and can be dynamically added. The original 
motivation for these auxiliary engines was to solve the 
problem of calculating trajectories and then determining 
what objects are intersected by a given trajectory. Such a 
computation is clearly needed in experiences where 
weapons are fired, but it also needed in experiences where 
objects are selected by pointing.  

In our previous versions of the MR system, we 
delegated trajectory computation to the graphics engine 
where this can be done very efficiently. We then had the 
story engine sort the intersected objects by distance from the 
selection device (e.g., gun). The story engine could then 
determine the semantics of an object being selected, and use 
the order of intersection to handle such things as bullets 
hitting walls before encountering vulnerable objects. Our 
first thought with our new design was to move this 
trajectory computation onto the scripting engine. However, 
since MRScript is written in Java and is already handling 
script interpretation and all experience oversight, we 
encountered unacceptable delays. 

In the interest of flexibility and speed, we designed the 
notion of APEs and specified a common interface that 
supports trajectory computation, path planning (with 
optional collision detection), line-of-sight calculation and 
other, as yet undetermined, model-based services. In our 
first use of an APE, we employed the graphics engine as a 
provider of trajectory services; in this case the operation 
matches that of our older implementations.  

Our goal now is to expand our experiments to employ 
dedicated APE service providers (computational 
workhorses). Each APE may provide a subset of basic 
services and some additional set of advanced features. APEs 
must support reflection (a method that reports the list of all 
services provided by this particular APE), so a potential 
user, e.g., agent, can determine if a given APE meets its 
requirements. APEs must also respond to a request to 
determine their current workloads. This can be used to do 
load balancing for complex large MR worlds.  

Beyond the specific extension of MRScript with APEs 
and new AI plug-ins, our primary future efforts are focused 

on creating an “authoring by example” user interface [2][6]. 
In general, we wish to support the notion of an MR Backlot, 
with all sorts of reusable virtual assets and model behaviors 
that can be easily accessed, understood and employed in the 
authoring of new experiences.  
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