
1

Adaptive Scene Synchronization for Virtual and Mixed Reality Environments

Felix G. Hamza-Lup1 and Jannick P. Rolland1,2

1School of Electrical Engineering and Computer Science
2School of Optics-CREOL

University of Central Florida
fhamza@cs.ucf.edu, jannick@odalab.ucf.edu

Abstract

 Technological advances in virtual environments
facilitate the creation of distributed collaborative
environments, in which the distribution of three-
dimensional content at remote locations allows efficient
and effective communication of ideas. One of the
challenges in distributed shared environments is
maintaining a consistent view of the shared information,
in the presence of inevitable network delays and variable
bandwidth. A consistent view in a shared 3D scene may
significantly increase the sense of presence among
participants and improve their interactivity. This paper
introduces an adaptive scene synchronization algorithm
and a framework for integration of the algorithm in a
distributed real-time virtual environment. In spite of
significant network delays, results show that objects can
be synchronous in their viewpoint at multiple remotely
located sites. Furthermore residual asynchronicity is
quantified as a function of network delays and scalability.

1. Introduction

 Advances in optical projection and computer graphics
allow participants in virtual environments to span the
virtuality continuum from real worlds to entirely
computer generated environments, with the opportunity to
also augment their reality with computer generated three-
dimensional objects [1][2]. These objects can be created
in real-time using dynamic texture projection techniques
on refined 3D models [3]. In the case of remotely located
participants, the distribution of three-dimensional objects
allows efficient communication of ideas through three-
dimensional stereo images that may be viewed in either a
mixed reality or an immersive reality configuration. When
designing a distributed application that takes advantages
of virtual and mixed reality, large amounts of data may
need to be distributed among the remote sites. This
distribution must occur in real-time in order to ensure
interactivity. For an effective collaboration, all the
participants must be able to see the effects of the
interaction at the same time. Every time the scene

changes, new objects appear, or objects change their
position and/or orientation, all participants must perceive
these changes simultaneously, i.e. the dynamic shared
state has to be consistent for all the participants.
 This paper presents a scene synchronization algorithm
that will compensate for the network latency, ensuring
that all the participants to a distributed stereoscopic
visualization session see the same pose (i.e. position and
orientation) for the virtual objects in the scene. The
algorithm ensures optimal synchronization of the scenes,
by adapting to the variations in the network delays among
the participating nodes.
 The paper is structured as follows. Section 2 discusses
related work. Section 3 describes the adaptive scene
synchronization algorithm employed to compensate for
the network delays. Section 4 presents the integration of
the algorithm in a framework and a method for
synchronization assessment. Section 5 focuses on the
experimental results. Finally, Section 6 concludes the
paper and identifies areas of future research.

2. Related work

 From the distributed systems perspective, research in
synchronization has been focused on time
synchronization. The NTP [4] (Network Time Protocol)
represents a way to keep the clocks of several nodes
across the Internet synchronized. Miniaturization and
low-cost design has led to active research in
synchronization in large scale sensor networks [5].
 Synchronization is a critical paradigm for any
distributed virtual or mixed reality collaborative
environment. Maintaining the consistency of the dynamic
shared state in such an environment is one of the most
difficult tasks. Previous work points to the need of
synchronizing shared viewpoints. In some recent work,
Schmalstieg and Hesina (2002) presented Studierstube,
which uses a distributed shared scene graph to keep track
of the actions applied on the shared scene by multiple
participants [6]. The authors show that multiple
concurrent operations on the objects in the scene may lead
to inconsistent views. As communication delays increase,
the inconsistency among remote participants grows even

2

further. Therefore, synchronization is a key factor for
maintaining a consistent view among the participants to a
distributed mixed reality application.
 There are several factors that affect the synchronicity
of a distributed virtual reality (VR) or mixed reality (MR)
system, including network delays and variable bandwidth.
Various distributed VR systems address these two factors
in different ways. In the DEVA3 VR system [7], each
entity is composed of a single "object" that represents
what the entity does, and a set of "subjects" that
represents how the entity looks, sounds, and feels. The
object position is updated only when the subject has
moved a certain distance from its previously synchronized
location. Another synchronization approach is available in
the MASSIVE-3 [8], a predecessor of the HIVE VR
system. The updates in MASSIVE-3 are effective
combinations of centralized updates and ownership
transfers. In this approach, where the updates are
centralized, the problem is system scalability. Other
factors that affect the synchronicity of a distributed VR or
MR system, besides the network delays, are differences in
the hardware architectures over the system’s nodes,
hardware buffering, and software system delays [9].
Assuming similar rendering hardware for the system
nodes, the most relevant factor is the network latency.
The increase of LAN bandwidth and the decrease of
queuing time facilitate the design of efficient
synchronization algorithms that take into account the
network characteristics. To the best of the authors'
knowledge, algorithms for dynamic shared state
maintenance in a virtual or a MR environment that take
into account the network characteristics, have not been
investigated.

3. Preserving the consistency of the dynamic
shared state

 The first step in a distributed VR or MR application is
to ensure that each participant has the appropriate
resources to render the virtual components of the scene. If
the distributed application must ensure a real-time
behavior, the appropriate resources must be available at
specific time instances.
 The virtual 3D objects in the scene usually have a
polygonal representation. This representation allows for
quick rendering; however, the polygonal representation
might require significant storage space. Distributing these
3D objects, in real-time, on a local area network to a large
number of clients is not possible. Our approach is to
asynchronously download these models locally at each
node before the interactive simulation starts.
 Section 3.1 categorizes VR and MR applications based
on the update frequencies, while the adaptive scene
synchronization algorithm is introduced in Section 3.2.

3.1. Continuous vs. Discrete updates

 Data flow in a distributed system, can be categorized
as continuous or discrete. A discrete flow means that there
are time intervals when the network infrastructure is not
used. Similarly, when a VR or MR scene is modified, the
modifications of the virtual components of the scene
might have a continuous or a discrete pattern. For
example, consider a scene that contains a virtual object,
and whose position and orientation is given by a tracking
system with a refresh rate of 120 Hz. An event-based
mechanism will not fit this application since it would
trigger an event every 8.33ms (1000/120). A distributed
system built to fit such a model would have to
continuously broadcast the tracking data to all its nodes.
 On the other hand, if we consider that a participant
changes the position and orientation of the object from a
graphical user interface using a mouse, the participant is
going to perform a sequence of actions (rotations and
translations) on the object with a much slower rate. The
fastest human-computer response time includes
perceptual, conceptual, and motor cycle times, which add
up to an average of about 240ms [10]. Moreover, some
actions will generate continuous predictive movements.
For example, the participant might spin the object for an
indefinite period of time with a specific velocity around a
specific axis. A distributed system built to fit such a
model would have to discretely distribute the participant’s
actions to all its nodes. The event-based approach is more
feasible in this case. The scalability of the system is also
improved, because the system nodes use the network only
when updates on the shared scene are necessary.

3.2. Adaptive scene synchronization algorithm

 The adaptive scene synchronization algorithm assumes
an event-based mechanism, triggered either by the
participant actions on the shared scene or by a sensor (e.g.
a tracking system) whose update cycle time is comparable
or higher than the network latency. Such assumption is
generally true as 100 Mbs local area networks (LANs)
and optical routing are becoming increasingly available,
decreasing delays and increasing bandwidth.
 To control the position and orientation of the objects in
the shared scene, each 3D object has a control packet
associated with it. The control packet contains
information about the position and orientation of the
object, as well as information regarding the actions
associated with each object: rotation, translation or
scaling. The small size of the control packet (i.e. several
KB) ensures a very low propagation delay, which allows
the development of scalable, distributed real-time
applications on local area networks. As the control
packets flow through the LAN, the adaptive scene
synchronization algorithm uses their information to
synchronize the shared scene among different

3

participants. The information carried by the control
packets is distributed to each participating node allowing
them to compensate for the network delays. These delays
are called here drift factors since they cause a
position/orientation drift of the virtual objects seen by the
remote participants.
 From the system architecture point of view we assume
a client-server design. The node running the server
process has the capability to interact with the virtual
objects in the scene. The server acts as a data provider by
pushing scene updates to the clients whenever the scene
changes. The client nodes pull information from the
server about their individual communication delays. The
determination of the time intervals at which the
measurements are triggered is described in Section 3.3.
 The interaction with the virtual components of the
scene is done through a graphical user interface (GUI).
Commonly the interaction with the mixed reality scene
leads to position, orientation and scale changes of the
virtual components, assuming the components are
representations of rigid objects. For this reason we have
designed a GUI which allows the participant to change
the virtual object’s position and/or orientation with a
specific velocity as seen in Fig.1. Each new event
triggered from the graphical user interface that changes
the object position or orientation is considered an action
applied on that object. Each action has a velocity
associated with it.

Fig. 1 Graphical User Interface. The white sphere

represents a mouse driven 3D pointer. All the
participants are able to see the pointer as the

participant running the server process points to
different locations in the 3D scene.

 For simulation purposes, we ignore the acceleration
component. From the computational complexity point of
view, second-order polynomials that include object
acceleration will not affect the computation speed,
however higher order polynomials might delay the entire
system. Moreover, when object acceleration changes
frequently, it is better to ignore the acceleration estimate
than to produce an inaccurate prediction before the next
update is received.

 Let's define the drift value for a particular object i
present in the shared scene and a particular client node j
as the product between the action velocity for the object
and the network delay from the server to that node. If we
denote Mτ as the number of virtual objects in a shared
scene of Nτ participating nodes, both at a given time τ, a
drift matrix D(Mτ,Nτ) associated with the distributed
system at a particular time τ may be defined as:

 D(Mτ,Nτ) = S T t (1)

where S and T are both column vectors, S containing the
action velocities for each object currently in the shared
scene, and T the network delays from each participating
client node to the server. T t represents the transpose of T.
The action velocity is extracted from each object’s control
packet, while the network delay is measured by each
client node using an adaptive probe that computes the
round trip time from the node to the server. S is stored
locally at each node and updated when the scene changes.
 A decentralized computational approach strips the drift
matrix in N column vectors, called drift vectors, which
contain the drift values of all the objects in the scene for a
particular node. The drift vectors are updated when a new
3D object is inserted or removed from the shared scene by
adding or respectively removing the entry associated with
the new object from all nodes. The drift vectors are also
updated when the participants perform actions on the
objects in the shared scene. Whenever an action is applied
to an object (e.g. a rotation), a control packet associated
with that object is broadcasted to all the nodes. The
information from the control packets is the first
component used for synchronization. The second
component accounts for the packet propagation and
packet queuing delays. At specific intervals, each node
"pings" the server to estimate an average network delay
and computes the drift vectors associated with the objects
in the scene as the product between the propagation delay
and the objects' actions velocities. Each delay
measurement between a node and the server triggers the
node's drift vector update.
 A sketch of the Adaptive Scene Synchronization
algorithm is now described. The ComputeNodeDelay()
function returns the delay associated with the connection
between a specific node and the server. The UpdateDrift()
function updates the drift values for the objects in the
scene on each node. Three Boolean variables are used:
changedScene that accounts for the changes in the scene,
newClientRequest which is set if a new client has joined,
and trigger, used in tracking the network behavior as
described in Section 3.3. Finally the functions
ReceiveChanges() and BroadcastChanges() ensure correct
scene updates among the nodes of the system and the
server. Each node's scene is synchronized with the server
scene. Hence, a consistent dynamic shared state is
maintained over all the participants.

4

 Algorithm: Adaptive Scene Synchronization
 Output: Synchronized shared scenes for a distributed
 interactive VR/MR application.
 Client side:
 Initialization:
 Tn ← ComputeNodeDelay()
 Sn ← UpdateAction();
 Dn ← UpdateDrift()
 UpdateLocalScene();
 Main:
 if (trigger)
 Tn ← ComputeNodeDelay()
 Dn ← UpdateDrift()
 end if
 if (changedScene)
 Sn← ReceiveChanges()
 Dn ← UpdateDrift()
 end if
 Server side:
 for ever listen
 if (newClientRequest)
 SendToClient(Sn);
 end if
 if (changedScene)
 BroadcastChanges();
 end if
 end for

3.3. Fixed threshold vs. adaptive threshold

 As a result of the network jitter, the round trip times
among different nodes vary. To achieve the best
synchronization possible among collaborating nodes,
delay measurements must be triggered whenever
significant variations appear. These data are necessary to
obtain an estimate of the average delay for each node (i.e.
participant) that joins the distributed application. An
average round trip time can be obtained by sending "ping"
messages to the newly arrived node when it joins the
group. Half of this delay represents an average delay from
the node to the server.
 The adaptive synchronization algorithm uses two
approaches to trigger the information collection. In the
first approach, at regular time intervals, using ICMP, a
node opens a raw socket and measures the round trip time
to the server. We call this the "fixed threshold" approach.
However, gathering all this data implies additional delays
at the client side and additional network traffic. The time
intervals at which these measurements are triggered
impact the real-time behavior and the scalability of the
algorithm.
 An alternative approach consists of adaptively
triggering the round trip measurements for each node,
based on the delay history, which better characterizes the

network traffic and the application. In this approach, a
fixed threshold is initially used at each node to build the
delay history denoted Hp. The delay history is a sequence
of p delay measurements hi where i=1,p (e.g. in the
implementation we have chosen p to be 100).
 Let σ and hmean be the standard deviation and the mean
of Hp , respectively. Let h0 be the most recent delay, i.e.
the last number in the Hp sequence, and γ0 the current
frequency of delay measurements, expressed as the
number of measurements per second. The adaptive
strategy is to decrease γ0 by 1 unit if h0∈ [hmean - σ ,
hmean + σ] and to increase γ0 by 1 if h0 does not belong to
this interval.

4. DARE

 The adaptive scene synchronization algorithm has been
embedded in DARE, a Distributed Artificial Reality
Environment, which is developed at the ODALab
(http://odalab.creol.ucf.edu/dare). DARE [11] is a
framework which uses virtual environments and
distributed systems paradigms to improve human-to-
human interaction enhancing the real scene that a person
sees with 3D computer generated objects. Applications
built using this framework range from distributed
scientific visualization to interactive distributed
simulations and span the entire virtuality continuum [12].

4.1. System components

 The first collaborative environment that we have
developed based on DARE consists of several sites
located on a local area network. From the hardware point
of view each site consists of at least one head-mounted
display [13], a Linux based PC and a quasi-cylindrical
room, called Artificial Reality Center (ARC) [2].
 As participants wearing head-mounted displays enter
the ARC, they gradually start immersing themselves in
virtuality. Initially, the scene is augmented with floating
objects as seen in Fig.2.

Fig. 2 Remote participant

5

 These virtual objects augment the participant’s reality
and they may appear to multiple participants wearing
head-mounted displays as illustrated in Fig.3.

Fig. 3 Local collaboration

Participants can also interact with the 3D models. Using a
three-dimensional graphical user interface they can point
in the virtual space to different parts of the virtual objects
and they can manipulate them.
 Several ARC rooms can be interconnected on a LAN
allowing remote stereoscopic visualization. People
located in these rooms, as shown in Fig.4, can visualize
and manipulate virtual objects from a shared scene.

ARC

 Internet
Extranet
Intranet

ARC

ARC
Fig. 4 NOE's ARCs (Networked Open

Environments Artificial Reality Centers)

4.2. Method for synchronization assessment

 To assess the efficiency of the synchronization
algorithm we measured the amount of drift between the
orientations of a 3D object at remote sites. The
measurements were done pair-wise between the server
node and each of the client nodes. Each node pair shared
the same virtual 3D scene; one acted as a server and the
other as a client. As described in Section 3.2, a GUI was
available at the server site, which allowed the participant
at that node to change the object position applying
rotations around the Cartesian axis. This participant
generated events from the GUI, and each time an event
was generated, the position/orientation of the virtual

object is recorded at every participating node. Because of
the network latency, different vectors at each node
described the orientation of the object. The rotations can
be easily expressed using the quaternion notation.
 Let qs express the rotation of an object at one node (e.g.
server node) and let qc express the rotation of the same
object at another node (e.g. client node). Both nodes
render the same virtual scene and the displayed object
should have exactly the same position and orientation. To
quantify the difference between the orientations of the
object on two different nodes we can compute the
correction quaternion qE between the nodes every time the
participant triggers a new event. The correction can be
expressed as follows:

 cEs qqq = (2)
 And thus

 1−= csE qqq (3)

 The quaternion qE may be further expressed as

))k,zj,yi)(xα(),α(() v, (ω q EEE
ˆˆˆ

2
sin

2
cos== � (4)

 where

)(cos2 1
Eωα −= (5).

 The angle α represents the drift between the
orientations of a 3D object as seen by the two nodes.

5. Experimental setup and results

 To evaluate the performance of the algorithm, we first
calculated the network latency using a latency
measurement probe on a 100 Mbps LAN. The average
round trip time for this setting was 1.5 ms.
 To investigate the effect of the network latency, given
that the drift value for an object is the product between
the action velocity and the network latency, as defined in
Section 3.2, we repeated the experiments at different
action velocities.
 To prove the scalability of the system, regarding the
number of participants, two sets of experiments were
performed. The first set contained two nodes, one acting
as a client, the other one as a server. The second set
contained 5 nodes, one acting as a server and the other 4
as clients.

5.1. Two nodes setup: network latency analysis

 Running the distributed visualization with and without
the synchronization algorithm, we can assess the
effectiveness of the algorithm. Fig.5 provides a plot of the
drift angle (α) for various action velocities before
synchronization. The actions in this case are random

6

rotations of a virtual object around its coordinate axis
with the angular velocity of: 10, 50 and 100 degrees per
second. The plot shows that as the action velocities
increase, the drift also increases as expected and the
magnitude of the drift reaches after 24 actions over 140
degrees for high action velocities. Overall, the drift
increases in time as more and more actions are applied on
the object. The sudden drops in the drift are caused by the
compensating factor of the random rotations (e.g.
clockwise followed by counterclockwise rotations of the
object around the same axis). The drifts created will
compensate each other to some extent.

0

20

40

60

80

100

120

140

160

180

1 4 7 10 13 16 19 22 25 28 31 34

Action number

D
rif

t (
de

gr
ee

s)

Action velocity = 10 degrees/second
Action velocity = 50 degrees/second
Action velocity = 100 degrees/second

Fig. 5 The angular drift (α) without

synchronization for different angular velocities
 The synchronization module activation causes a
significant decrease in the drift as shown in Fig.6.

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Action number

D
rif

t (
de

gr
ee

s)

Action velocity = 10 degress/second
Action velocity = 50 degrees/second
Action velocity = 100 degrees/second

Fig. 6 The angular drift (α) with synchronization

for different angular velocities

 As the action velocity is increased, the drift oscillation
amplitude also increases, however the drift value is
maintained at an average of 2.4 degrees in the worst case,
when the action velocity is 100 degrees per second.
Moreover the average drift value has almost a constant
value during the simulation.
 Increasing the action velocity to 100 degrees per
second on a network having 1.5 ms latency would be
equivalent, in terms of drift magnitude, to running the
simulation on a network having 15 ms latency using
action velocities of 10 degrees per second. This proves
that the synchronization algorithm is effective at

maintaining the dynamic shared state of a distributed VR
or MR application over nodes separated by network
latencies of 15 ms.
 The adaptive approach for triggering the network delay
measurements, described in Section 3.3, has a positive
impact on the scalability of the applications deployed on a
stable network infrastructure. On the other hand, if the
latency of the network infrastructure varies, the frequency
of measurements triggered by each client node increases.
If the number of participants also increases, the server
might become ping flooded. Strategies in the category of
ping flood protection might be employed in this case,
which will limit the number of participants to the mixed
reality collaborative simulation.

5.2. Five nodes setup: scalability analysis

 To test the scalability of the algorithm, a five nodes
setup was tested. This setup allowed 5 remote participants
to be part of the distributed interactive simulation. One of
the nodes runs the server process and the participant on
this node is able to change the position and orientation of
the virtual objects in the scene. In the current
implementation, the other 4 participants do not interact
with the scene. They are only able to visualize the virtual
scene. During the simulation we monitor the orientation
of one virtual object while the participant on the server
node applies rotations on it with different speeds. The
other four nodes run client processes and they are able to
visualize the same virtual scene. Every new event
generated from the server node triggers an orientation
update on the virtual object on each node. At the same
time, the current orientation is recorded in a file on each
node.
 From the hardware point of view, the nodes are
heterogeneous. The network cards on all nodes support
100Mbps connections. Below is a table containing a brief
specification of each node’s hardware components.

Table. 1 Hardware systems attributes

Node
no.

Arch CPU
(GHz)

RAM
(MB)

Video card
(GeForce)

1 Desktop 1.5 AMD 1024 4 Ti4600
2 Desktop 1 P3 1024 2 Mx
3 Desktop 1.4 P4 512 4 Mx 440
4 Desktop 1.7 AMD 1024 4 Ti4600
5 Laptop 2 P4 1024 4 Go440

 In the first stage, the simulation was run without
synchronization and at different action velocities. Fig.7
presents a plot of the angular drifts for different speeds for
each client node. The legend for Node 2 applies to Node
3, 4 and 5. Node 1 is acting as a server and was used as a
reference for the drift computation.

7

0
10
20
30
40
50
60
70
80
90

1 4 7 10 13 16 19 22 25 28 31
Action number

D
rif

t (
de

gr
ee

s)

Action velocity = 10 degrees/second
Action velocity = 50 degrees/second
Action velocity = 100 degrees/second

Node 2

0

20

40

60

80

100

120

140

160

1 4 7 10 13 16 19 22 25 28 31

Action number

D
rif

t (
de

gr
ee

s)

Node 3

0

20

40

60

80

100

120

140

160

1 4 7 10 13 16 19 22 25 28 31

Action number

D
rif

t (
de

gr
ee

s)

Node 4 Node 5

0
10
20
30
40
50
60
70
80
90

1 4 7 10 13 16 19 22 25 28 31

Action number

D
rif

t (
de

gr
ee

s)

Fig. 7 The angular drift (α) without
synchronization for different angular velocities

on different nodes
 As in the first set of experiments, the results show that
the drift increases as the action velocity increases. The
drift variation over different nodes is caused by the
hardware heterogeneity of the nodes.
 The second stage of the simulation was executed with
the synchronization module active and at different action
velocities. As the action velocity increases, it negatively
affects the drift correction, however in all cases the
average drift angle at 100 degree/second action velocity
does not exceed 3.5 degrees, and over all the nodes the
drift average is 2.9 degrees.
 Fig.8 illustrates the drift variations over different nodes
with the synchronization module active. The legend for
Node 2 applies to Node 3, 4 and 5. Node 1 is acting as a
server and was used as a reference for the drift
computation.

0

0.5

1

1.5

2

2.5

3

3.5

1 4 7 10 13 16 19 22 25 28 31

Action number

D
rif

t (
de

gr
ee

s)

Action velocity = 10 degrees/second
Action velocity = 50 degrees/second
Action velocity = 100 degrees/second

Node 2

0

0.5

1

1.5

2

2.5

3

3.5

1 4 7 10 13 16 19 22 25 28 31

Action number

D
rif

t (
de

gr
ee

s)

Node 3

0

1

2

3

4

5

6

1 4 7 10 13 16 19 22 25 28 31

Action number

D
rif

t (
de

gr
ee

s)

Node 4

0

0.5

1

1.5

2

2.5

3

1 4 7 10 13 16 19 22 25 28 31

Action number

D
rif

t (
de

gr
ee

s)

Node 5

Fig. 8 The angular drift (α) with synchronization
for different angular velocities on different nodes

 The current client-server architecture on which the
algorithm was deployed seems to introduce the
disadvantage of a centralized approach. Scale is clearly
limited by the capacity of the server, and centralized
systems are often thought of as having a low degree of
scalability. However, in our approach the majority of the
computation is distributed among participating nodes.
Each node renders its own scene and computes its own
drift value. The only burden on the server node, which
increases with the number of nodes, is the reply to each
delay measurement message sent by a client node.
 We can define a metric analyzing the relationship
between the number of nodes in the system and the drift
values. Provided that the algorithm is activated, let ψi be
the average drift value over all the nodes, when i+1 nodes
are in the system and the action velocity is set to 100
degrees per second, for example. In the case of a two
nodes setup results show that the average drift is ψ1 = 2.4
degrees while in the case of 5 nodes setup the average
drift is ψ4 = 2.9 degrees. An algorithm with low degree of
scalability would have at least a linear increase in drift,
i.e. ψn = n ψ1 , while a high degree of scalability would
mean ψn ≈ ψ1 . Using this metric in the 5 nodes setup, a
low degree of scalability would translate to ψ4 = 4*ψ1 =
9.6 degrees. However the experimental results show that
ψ4 ≈ ψ1 i.e. the algorithm scales well.

6. Conclusion and future work

 We have presented an adaptive synchronization
algorithm that addresses the impact of network latency on
shared scenes in distributed mixed and virtual reality
applications. The fundamental property of our design is
that the algorithm takes into account the network latency.
Moreover, by taking into account the measurement
history of the end-to-end network delays between the
nodes and the server, the network jitter is taken into
consideration. The decentralized computation approach
for the drift values, carried out independently at each
node, improves the system’s scalability and its real-time
behavior.
 The proposed algorithm works under the assumption
that the system is driven by events generated by a human
actor or a sensor with low update frequency. As the
widespread use of high speed optical networks and optical
routing becomes increasingly common, the approach
presented will be widely applicable. Future work will
involve testing the current algorithm when high frequency
update sensors are connected to the system (e.g. tracking
systems and haptic devices).
 If the network latency is high, disconcerting jumps in
the object position and orientation will occur at some
nodes. We are investigating the possibility of eliminating
these jumps using interpolation.

8

7. Acknowledgements

 We wish to thank our sponsors NSF/ITR: IIS-00-820-
16, the Link Foundation, and the US Army Simulation,
Training, and Instrumentation Command (STRICOM) for
their invaluable support for this research. We also thank
Eric Clarkson for stimulating discussions about
quaternions, and Charles Hughes for stimulating
comments about the paper.

8. References

[1] Billinghurst, M., H. Kato, K. Kiyokawa, D. Belcher, I.
Popyrev, "Experiments with Face to Face Collaborative AR
Interfaces. Virtual Reality Journal, Vol.4, No.2 ,2002.

[2] Davis, L, J. Rolland, F. Hamza-Lup, Y. Ha, J. Norfleet, C.
Imielinska, "Enabling a Continuum of Virtual Environment
Experiences", IEEE Computer Graphics & Applications, Vol.
23, No. 2, pp.10-12 2003.

[3] Neumann, U., S. You, J. Hu, B. Jiang, and J. W. Lee,
"Augmented Virtual Environments (AVE): Dynamic Fusion of
Imagery and 3D Models," IEEE Virtual Reality 2003, pp. 61-67,
Los Angeles California, 2003.

[4] Mills, D., " Internet Time Synchronization: The Network
Time Protocol." in Global States and Time in Distributed
Systems. IEEE Computer Society Press, 1994.

[5] Elson, J., L. Girod, and D. Estrin, "Fine-Grained Network
Time Synchronization using Reference Broadcasts". Fifth

Symposium on Operating Systems Design and Imp., (OSDI),
2002.

[6] Schmalstieg, D., G. Hesina, "Distributed Applications for
Collaborative Augmented Reality" Proceedings of IEEE Virtual
Reality 2002, pp. 59-66, Orlando, Florida, March 24-28, 2002.

[7] Pettifer S, J. Cook, J. Marsh and A. West, ”DEVA3:
Architecture for a Large-Scale Distributed Virtual Reality
System”, ACM VRST, 2000.

[8] Greenhalgh C., J.Purbrick and D. Snowdon, ”Inside
MASSIVE3: Flexible Support for Data Consistency and World
Structuring”, ACM CVE, 2000.

[9] Swindells C., J. Dill and K. Booth, ”System Lag Tests for
Augmented and Virtual Environments”, ACM CHI, Vol. 2(2),
2000.

[10] Eberts & Eberts, "Intelligent interfaces: theory, research,
and design (pp. 69-127)", in Hancock and Chignell(Eds.), Noth
Holland, Elsevier Science Publishers, 1989.

[11] Hamza-Lup, F., L. Davis, J.Rolland, C. Hughes, "Where
Digital meets Physical – Distributed Augmented Reality
Environments", ACM Crossroads, Vol 8.3, 2003.

[12] Milgram, P., F. Kishino, "A Taxonomy of Mixed Reality
Visual Displays", IECE Trans. Information and Systems
(Special Issue on Networked Reality), vol. E77-D, no.12, pp.
1321-1329, 1994.

[13] Hua, H, Y. Ha, and J.P. Rolland, "Design of an ultra-light
and compact projection lens", Applied Optics 42(1), pp.97-107,
2003.

