
1 

Adaptive Scene Synchronization for Virtual and Mixed Reality Environments 
 
 

Felix G. Hamza-Lup1 and Jannick P. Rolland1,2 

1School of Electrical Engineering and Computer Science 
2School of Optics-CREOL 

University of Central Florida 
fhamza@cs.ucf.edu, jannick@odalab.ucf.edu 

 
 
 

Abstract 
 
 Technological advances in virtual environments 
facilitate the creation of distributed collaborative 
environments, in which the distribution of three-
dimensional content at remote locations allows efficient 
and effective communication of ideas. One of the 
challenges in distributed shared environments is 
maintaining a consistent view of the shared information, 
in the presence of inevitable network delays and variable 
bandwidth. A consistent view in a shared 3D scene may 
significantly increase the sense of presence among 
participants and improve their interactivity. This paper 
introduces an adaptive scene synchronization algorithm 
and a framework for integration of the algorithm in a 
distributed real-time virtual environment. In spite of 
significant network delays, results show that objects can 
be synchronous in their viewpoint at multiple remotely 
located sites. Furthermore residual asynchronicity is 
quantified as a function of network delays and scalability.  
 
 
1. Introduction 
 
 Advances in optical projection and computer graphics 
allow participants in virtual environments to span the 
virtuality continuum from real worlds to entirely 
computer generated environments, with the opportunity to 
also augment their reality with computer generated three-
dimensional objects [1][2]. These objects can be created 
in real-time using dynamic texture projection techniques 
on refined 3D models [3]. In the case of remotely located 
participants, the distribution of three-dimensional objects 
allows efficient communication of ideas through three-
dimensional stereo images that may be viewed in either a 
mixed reality or an immersive reality configuration. When 
designing a distributed application that takes advantages 
of virtual and mixed reality, large amounts of data may 
need to be distributed among the remote sites. This 
distribution must occur in real-time in order to ensure 
interactivity. For an effective collaboration, all the 
participants must be able to see the effects of the 
interaction at the same time. Every time the scene 

changes, new objects appear, or objects change their 
position and/or orientation, all participants must perceive 
these changes simultaneously, i.e. the dynamic shared 
state has to be consistent for all the participants. 
 This paper presents a scene synchronization algorithm 
that will compensate for the network latency, ensuring 
that all the participants to a distributed stereoscopic 
visualization session see the same pose (i.e. position and 
orientation) for the virtual objects in the scene.  The 
algorithm ensures optimal synchronization of the scenes, 
by adapting to the variations in the network delays among 
the participating nodes.  
 The paper is structured as follows. Section 2 discusses 
related work. Section 3 describes the adaptive scene 
synchronization algorithm employed to compensate for 
the network delays. Section 4 presents the integration of 
the algorithm in a framework and a method for 
synchronization assessment. Section 5 focuses on the 
experimental results. Finally, Section 6 concludes the 
paper and identifies areas of future research. 
 
2. Related work 
 
 From the distributed systems perspective, research in 
synchronization has been focused on time 
synchronization. The NTP [4] (Network Time Protocol) 
represents a way to keep the clocks of several nodes 
across the Internet synchronized. Miniaturization and 
low-cost design has led to active research in 
synchronization in large scale sensor networks [5].  
 Synchronization is a critical paradigm for any 
distributed virtual or mixed reality collaborative 
environment. Maintaining the consistency of the dynamic 
shared state in such an environment is one of the most 
difficult tasks. Previous work points to the need of 
synchronizing shared viewpoints.  In some recent work, 
Schmalstieg and Hesina (2002) presented Studierstube, 
which uses a distributed shared scene graph to keep track 
of the actions applied on the shared scene by multiple 
participants [6]. The authors show that multiple 
concurrent operations on the objects in the scene may lead 
to inconsistent views. As communication delays increase, 
the inconsistency among remote participants grows even 
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further. Therefore, synchronization is a key factor for 
maintaining a consistent view among the participants to a 
distributed mixed reality application. 
 There are several factors that affect the synchronicity 
of a distributed virtual reality (VR) or mixed reality (MR) 
system, including network delays and variable bandwidth.  
Various distributed VR systems address these two factors 
in different ways. In the DEVA3 VR system [7], each 
entity is composed of a single "object" that represents 
what the entity does, and a set of "subjects" that 
represents how the entity looks, sounds, and feels. The 
object position is updated only when the subject has 
moved a certain distance from its previously synchronized 
location. Another synchronization approach is available in 
the MASSIVE-3 [8], a predecessor of the HIVE VR 
system. The updates in MASSIVE-3 are effective 
combinations of centralized updates and ownership 
transfers. In this approach, where the updates are 
centralized, the problem is system scalability. Other 
factors that affect the synchronicity of a distributed VR or 
MR system, besides the network delays, are differences in 
the hardware architectures over the system’s nodes, 
hardware buffering, and software system delays [9]. 
Assuming similar rendering hardware for the system 
nodes, the most relevant factor is the network latency. 
The increase of LAN bandwidth and the decrease of 
queuing time facilitate the design of efficient 
synchronization algorithms that take into account the 
network characteristics. To the best of the authors' 
knowledge, algorithms for dynamic shared state 
maintenance in a virtual or a MR environment that take 
into account the network characteristics, have not been 
investigated. 
  
3. Preserving the consistency of the dynamic 
shared state 
 
 The first step in a distributed VR or MR application is 
to ensure that each participant has the appropriate 
resources to render the virtual components of the scene. If 
the distributed application must ensure a real-time 
behavior, the appropriate resources must be available at 
specific time instances. 
 The virtual 3D objects in the scene usually have a 
polygonal representation. This representation allows for 
quick rendering; however, the polygonal representation 
might require significant storage space.  Distributing these 
3D objects, in real-time, on a local area network to a large 
number of clients is not possible. Our approach is to 
asynchronously download these models locally at each 
node before the interactive simulation starts.  
 Section 3.1 categorizes VR and MR applications based 
on the update frequencies, while the adaptive scene 
synchronization algorithm is introduced in Section 3.2. 
 

3.1. Continuous vs. Discrete updates 
 
 Data flow in a distributed system, can be categorized 
as continuous or discrete. A discrete flow means that there 
are time intervals when the network infrastructure is not 
used. Similarly, when a VR or MR scene is modified, the 
modifications of the virtual components of the scene 
might have a continuous or a discrete pattern. For 
example, consider a scene that contains a virtual object, 
and whose position and orientation is given by a tracking 
system with a refresh rate of 120 Hz. An event-based 
mechanism will not fit this application since it would 
trigger an event every 8.33ms (1000/120). A distributed 
system built to fit such a model would have to 
continuously broadcast the tracking data to all its nodes. 
 On the other hand, if we consider that a participant 
changes the position and orientation of the object from a 
graphical user interface using a mouse, the participant is 
going to perform a sequence of actions (rotations and 
translations) on the object with a much slower rate. The 
fastest human-computer response time includes 
perceptual, conceptual, and motor cycle times, which add 
up to an average of about 240ms [10]. Moreover, some 
actions will generate continuous predictive movements. 
For example, the participant might spin the object for an 
indefinite period of time with a specific velocity around a 
specific axis. A distributed system built to fit such a 
model would have to discretely distribute the participant’s 
actions to all its nodes. The event-based approach is more 
feasible in this case. The scalability of the system is also 
improved, because the system nodes use the network only 
when updates on the shared scene are necessary.  
 
3.2. Adaptive scene synchronization algorithm 
 
 The adaptive scene synchronization algorithm assumes 
an event-based mechanism, triggered either by the 
participant actions on the shared scene or by a sensor (e.g. 
a tracking system) whose update cycle time is comparable 
or higher than the network latency. Such assumption is 
generally true as 100 Mbs local area networks (LANs) 
and optical routing are becoming increasingly available, 
decreasing delays and increasing bandwidth. 
 To control the position and orientation of the objects in 
the shared scene, each 3D object has a control packet 
associated with it. The control packet contains 
information about the position and orientation of the 
object, as well as information regarding the actions 
associated with each object: rotation, translation or 
scaling. The small size of the control packet (i.e. several 
KB) ensures a very low propagation delay, which allows 
the development of scalable, distributed real-time 
applications on local area networks. As the control 
packets flow through the LAN, the adaptive scene 
synchronization algorithm uses their information to 
synchronize the shared scene among different 
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participants. The information carried by the control 
packets is distributed to each participating node allowing 
them to compensate for the network delays. These delays 
are called here drift factors since they cause a 
position/orientation drift of the virtual objects seen by the 
remote participants. 
 From the system architecture point of view we assume 
a client-server design. The node running the server 
process has the capability to interact with the virtual 
objects in the scene. The server acts as a data provider by 
pushing scene updates to the clients whenever the scene 
changes. The client nodes pull information from the 
server about their individual communication delays. The 
determination of the time intervals at which the 
measurements are triggered is described in Section 3.3. 
 The interaction with the virtual components of the 
scene is done through a graphical user interface (GUI). 
Commonly the interaction with the mixed reality scene 
leads to position, orientation and scale changes of the 
virtual components, assuming the components are 
representations of rigid objects. For this reason we have 
designed a GUI which allows the participant to change 
the virtual object’s position and/or orientation with a 
specific velocity as seen in Fig.1. Each new event 
triggered from the graphical user interface that changes 
the object position or orientation is considered an action 
applied on that object. Each action has a velocity 
associated with it.  

 
Fig. 1 Graphical User Interface. The white sphere 

represents a mouse driven 3D pointer. All the 
participants are able to see the pointer as the 

participant running the server process points to 
different locations in the 3D scene. 

 
 For simulation purposes, we ignore the acceleration 
component. From the computational complexity point of 
view, second-order polynomials that include object 
acceleration will not affect the computation speed, 
however higher order polynomials might delay the entire 
system. Moreover, when object acceleration changes 
frequently, it is better to ignore the acceleration estimate 
than to produce an inaccurate prediction before the next 
update is received. 

 Let's define the drift value for a particular object i 
present in the shared scene and a particular client node j 
as the product between the action velocity for the object 
and the network delay from the server to that node. If we 
denote Mτ as the number of virtual objects in a shared 
scene of Nτ participating nodes, both at a given time τ, a 
drift matrix D(Mτ,Nτ) associated with the distributed 
system at a particular time τ may be defined as:  
 

                        D(Mτ,Nτ) = S T t                          (1) 
 
where S and T are both column vectors, S containing the 
action velocities for each object currently in the shared 
scene, and T the network delays from each participating 
client node to the server. T t represents the transpose of T. 
The action velocity is extracted from each object’s control 
packet, while the network delay is measured by each 
client node using an adaptive probe that computes the 
round trip time from the node to the server. S is stored 
locally at each node and updated when the scene changes. 
 A decentralized computational approach strips the drift 
matrix in N column vectors, called drift vectors, which 
contain the drift values of all the objects in the scene for a 
particular node. The drift vectors are updated when a new 
3D object is inserted or removed from the shared scene by 
adding or respectively removing the entry associated with 
the new object from all nodes. The drift vectors are also 
updated when the participants perform actions on the 
objects in the shared scene. Whenever an action is applied 
to an object (e.g. a rotation), a control packet associated 
with that object is broadcasted to all the nodes. The 
information from the control packets is the first 
component used for synchronization. The second 
component accounts for the packet propagation and 
packet queuing delays. At specific intervals, each node 
"pings" the server to estimate an average network delay 
and computes the drift vectors associated with the objects 
in the scene as the product between the propagation delay 
and the objects' actions velocities. Each delay 
measurement between a node and the server triggers the 
node's drift vector update. 
 A sketch of the Adaptive Scene Synchronization 
algorithm is now described. The ComputeNodeDelay() 
function returns the delay associated with the connection 
between a specific node and the server. The UpdateDrift() 
function updates the drift values for the objects in the 
scene on each node. Three Boolean variables are used: 
changedScene that accounts for the changes in the scene, 
newClientRequest which is set if a new client has joined, 
and trigger, used in tracking the network behavior as 
described in Section 3.3. Finally the functions 
ReceiveChanges() and BroadcastChanges() ensure correct 
scene updates among the nodes of the system and the 
server. Each node's scene is synchronized with the server 
scene. Hence, a consistent dynamic shared state is 
maintained over all the participants. 



4 

 
 Algorithm: Adaptive Scene Synchronization  
 Output: Synchronized shared scenes for a distributed 
  interactive VR/MR application. 
 Client side:  
  Initialization: 
   Tn ← ComputeNodeDelay() 
   Sn ← UpdateAction(); 
   Dn ← UpdateDrift() 
   UpdateLocalScene(); 
  Main: 
  if (trigger)  
   Tn ← ComputeNodeDelay() 
   Dn ← UpdateDrift() 
  end if  
  if (changedScene) 
   Sn← ReceiveChanges() 
   Dn ← UpdateDrift() 
  end if 
 Server side: 
  for ever listen 
   if (newClientRequest)  
    SendToClient(Sn); 
   end if 
   if (changedScene) 
    BroadcastChanges(); 
   end if 
  end for 
 
3.3. Fixed threshold vs. adaptive threshold 
 
 As a result of the network jitter, the round trip times 
among different nodes vary. To achieve the best 
synchronization possible among collaborating nodes, 
delay measurements must be triggered whenever 
significant variations appear. These data are necessary to 
obtain an estimate of the average delay for each node (i.e. 
participant) that joins the distributed application. An 
average round trip time can be obtained by sending "ping" 
messages to the newly arrived node when it joins the 
group. Half of this delay represents an average delay from 
the node to the server. 
 The adaptive synchronization algorithm uses two 
approaches to trigger the information collection. In the 
first approach, at regular time intervals, using ICMP, a 
node opens a raw socket and measures the round trip time 
to the server. We call this the "fixed threshold" approach. 
However, gathering all this data implies additional delays 
at the client side and additional network traffic. The time 
intervals at which these measurements are triggered 
impact the real-time behavior and the scalability of the 
algorithm. 
 An alternative approach consists of adaptively 
triggering the round trip measurements for each node, 
based on the delay history, which better characterizes the 

network traffic and the application. In this approach, a 
fixed threshold is initially used at each node to build the 
delay history denoted Hp. The delay history is a sequence 
of p delay measurements hi where i=1,p (e.g. in the 
implementation we have chosen p to be 100).  
 Let σ and hmean be the standard deviation and the mean 
of Hp , respectively. Let h0 be the most recent delay, i.e. 
the last number in the Hp sequence, and γ0 the current 
frequency of delay measurements, expressed as the 
number of measurements per second. The adaptive 
strategy is to decrease γ0  by 1 unit if  h0∈ [ hmean - σ , 
hmean + σ ] and to increase γ0  by 1 if h0 does not belong to 
this interval.  
 
4. DARE 
 
 The adaptive scene synchronization algorithm has been 
embedded in DARE, a Distributed Artificial Reality 
Environment, which is developed at the ODALab 
(http://odalab.creol.ucf.edu/dare). DARE [11] is a 
framework which uses virtual environments and 
distributed systems paradigms to improve human-to-
human interaction enhancing the real scene that a person 
sees with 3D computer generated objects. Applications 
built using this framework range from distributed 
scientific visualization to interactive distributed 
simulations and span the entire virtuality continuum [12]. 
  
4.1. System components 
 
 The first collaborative environment that we have 
developed based on DARE consists of several sites 
located on a local area network. From the hardware point 
of view each site consists of at least one head-mounted 
display [13], a Linux based PC and a quasi-cylindrical 
room, called Artificial Reality Center (ARC) [2]. 
 As participants wearing head-mounted displays enter 
the ARC, they gradually start immersing themselves in 
virtuality. Initially, the scene is augmented with floating 
objects as seen in Fig.2.  
 

 
Fig. 2 Remote participant 



5 

 These virtual objects augment the participant’s reality 
and they may appear to multiple participants wearing 
head-mounted displays as illustrated in Fig.3.  
 

 
Fig. 3 Local collaboration 

 
Participants can also interact with the 3D models. Using a 
three-dimensional graphical user interface they can point 
in the virtual space to different parts of the virtual objects 
and they can manipulate them. 
 Several ARC rooms can be interconnected on a LAN 
allowing remote stereoscopic visualization. People 
located in these rooms, as shown in Fig.4, can visualize 
and manipulate virtual objects from a shared scene. 
 
 

 
ARC 

 
 Internet 
Extranet 
Intranet 

 
ARC  

ARC  
Fig. 4 NOE's ARCs (Networked Open 

Environments Artificial Reality Centers) 
 
4.2. Method for synchronization assessment 
 
 To assess the efficiency of the synchronization 
algorithm we measured the amount of drift between the 
orientations of a 3D object at remote sites. The 
measurements were done pair-wise between the server 
node and each of the client nodes. Each node pair shared 
the same virtual 3D scene; one acted as a server and the 
other as a client. As described in Section 3.2, a GUI was 
available at the server site, which allowed the participant 
at that node to change the object position applying 
rotations around the Cartesian axis. This participant 
generated events from the GUI, and each time an event 
was generated, the position/orientation of the virtual 

object is recorded at every participating node. Because of 
the network latency, different vectors at each node 
described the orientation of the object. The rotations can 
be easily expressed using the quaternion notation. 
 Let qs express the rotation of an object at one node (e.g. 
server node) and let qc express the rotation of the same 
object at another node (e.g. client node). Both nodes 
render the same virtual scene and the displayed object 
should have exactly the same position and orientation. To 
quantify the difference between the orientations of the 
object on two different nodes we can compute the 
correction quaternion qE between the nodes every time the 
participant triggers a new event. The correction can be 
expressed as follows: 

                   cEs qqq =                       (2) 
 And thus    

                    1−= csE qqq                        (3) 
 
 The quaternion qE may be further expressed as 
 

))k,zj,yi)(xα(),α(() v, (ω q EEE
ˆˆˆ

2
sin

2
cos== �  (4) 

 
 where 

                )(cos2 1
Eωα −=                   (5). 

 
 The angle α represents the drift between the 
orientations of a 3D object as seen by the two nodes.  
 
5. Experimental setup and results 
 
 To evaluate the performance of the algorithm, we first 
calculated the network latency using a latency 
measurement probe on a 100 Mbps LAN. The average 
round trip time for this setting was 1.5 ms.  
 To investigate the effect of the network latency, given 
that the drift value for an object is the product between 
the action velocity and the network latency, as defined in 
Section 3.2, we repeated the experiments at different 
action velocities. 
 To prove the scalability of the system, regarding the 
number of participants, two sets of experiments were 
performed. The first set contained two nodes, one acting 
as a client, the other one as a server. The second set 
contained 5 nodes, one acting as a server and the other 4 
as clients.  
 
5.1. Two nodes setup: network latency analysis 
 
 Running the distributed visualization with and without 
the synchronization algorithm, we can assess the 
effectiveness of the algorithm. Fig.5 provides a plot of the 
drift angle (α) for various action velocities before 
synchronization. The actions in this case are random 
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rotations of a virtual object around its coordinate axis 
with the angular velocity of: 10, 50 and 100 degrees per 
second. The plot shows that as the action velocities 
increase, the drift also increases as expected and the 
magnitude of the drift reaches after 24 actions over 140 
degrees for high action velocities. Overall, the drift 
increases in time as more and more actions are applied on 
the object. The sudden drops in the drift are caused by the 
compensating factor of the random rotations (e.g. 
clockwise followed by counterclockwise rotations of the 
object around the same axis). The drifts created will 
compensate each other to some extent. 
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Fig. 5 The angular drift (α) without 

synchronization for different angular velocities 
 The synchronization module activation causes a 
significant decrease in the drift as shown in Fig.6.  
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Fig. 6 The angular drift (α) with synchronization 

for different angular velocities 
 
 As the action velocity is increased, the drift oscillation 
amplitude also increases, however the drift value is 
maintained at an average of 2.4 degrees in the worst case, 
when the action velocity is 100 degrees per second. 
Moreover the average drift value has almost a constant 
value during the simulation.  
 Increasing the action velocity to 100 degrees per 
second on a network having 1.5 ms latency would be 
equivalent, in terms of drift magnitude, to running the 
simulation on a network having 15 ms latency using 
action velocities of 10 degrees per second. This proves 
that the synchronization algorithm is effective at 

maintaining the dynamic shared state of a distributed VR 
or MR application over nodes separated by network 
latencies of 15 ms. 
 The adaptive approach for triggering the network delay 
measurements, described in Section 3.3, has a positive 
impact on the scalability of the applications deployed on a 
stable network infrastructure. On the other hand, if the 
latency of the network infrastructure varies, the frequency 
of measurements triggered by each client node increases. 
If the number of participants also increases, the server 
might become ping flooded. Strategies in the category of 
ping flood protection might be employed in this case, 
which will limit the number of participants to the mixed 
reality collaborative simulation. 
 
5.2. Five nodes setup: scalability analysis 
 
 To test the scalability of the algorithm, a five nodes 
setup was tested. This setup allowed 5 remote participants 
to be part of the distributed interactive simulation. One of 
the nodes runs the server process and the participant on 
this node is able to change the position and orientation of 
the virtual objects in the scene. In the current 
implementation, the other 4 participants do not interact 
with the scene. They are only able to visualize the virtual 
scene. During the simulation we monitor the orientation 
of one virtual object while the participant on the server 
node applies rotations on it with different speeds. The 
other four nodes run client processes and they are able to 
visualize the same virtual scene. Every new event 
generated from the server node triggers an orientation 
update on the virtual object on each node. At the same 
time, the current orientation is recorded in a file on each 
node. 
 From the hardware point of view, the nodes are 
heterogeneous. The network cards on all nodes support 
100Mbps connections. Below is a table containing a brief 
specification of each node’s hardware components. 
 

Table. 1 Hardware systems attributes 
 

Node 
no. 

Arch CPU 
(GHz) 

RAM 
(MB) 

Video card 
(GeForce) 

1 Desktop 1.5  AMD 1024 4 Ti4600 
2 Desktop 1  P3 1024 2 Mx 
3 Desktop 1.4  P4 512 4 Mx 440 
4 Desktop 1.7 AMD 1024 4 Ti4600 
5 Laptop 2 P4 1024 4 Go440 
 
 In the first stage, the simulation was run without 
synchronization and at different action velocities. Fig.7 
presents a plot of the angular drifts for different speeds for 
each client node. The legend for Node 2 applies to Node 
3, 4 and 5.  Node 1 is acting as a server and was used as a 
reference for the drift computation. 
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Fig. 7 The angular drift (α) without 
synchronization for different angular velocities 

on different nodes 
 As in the first set of experiments, the results show that 
the drift increases as the action velocity increases. The 
drift variation over different nodes is caused by the 
hardware heterogeneity of the nodes. 
 The second stage of the simulation was executed with 
the synchronization module active and at different action 
velocities. As the action velocity increases, it negatively 
affects the drift correction, however in all cases the 
average drift angle at 100 degree/second action velocity 
does not exceed 3.5 degrees, and over all the nodes the 
drift average is 2.9 degrees.  
 Fig.8 illustrates the drift variations over different nodes 
with the synchronization module active. The legend for 
Node 2 applies to Node 3, 4 and 5.  Node 1 is acting as a 
server and was used as a reference for the drift 
computation. 
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Fig. 8 The angular drift (α) with synchronization 
for different angular velocities on different nodes 

  
 The current client-server architecture on which the 
algorithm was deployed seems to introduce the 
disadvantage of a centralized approach. Scale is clearly 
limited by the capacity of the server, and centralized 
systems are often thought of as having a low degree of 
scalability. However, in our approach the majority of the 
computation is distributed among participating nodes. 
Each node renders its own scene and computes its own 
drift value. The only burden on the server node, which 
increases with the number of nodes, is the reply to each 
delay measurement message sent by a client node.  
 We can define a metric analyzing the relationship 
between the number of nodes in the system and the drift 
values. Provided that the algorithm is activated, let ψi be 
the average drift value over all the nodes, when i+1 nodes 
are in the system and the action velocity is set to 100 
degrees per second, for example. In the case of a two 
nodes setup results show that the average drift is ψ1 = 2.4 
degrees while in the case of 5 nodes setup the average 
drift is ψ4 = 2.9 degrees. An algorithm with low degree of 
scalability would have at least a linear increase in drift, 
i.e. ψn =  n ψ1 , while a high degree of scalability would 
mean ψn ≈ ψ1  . Using this metric in the 5 nodes setup, a 
low degree of scalability would translate to ψ4 = 4*ψ1  = 
9.6 degrees. However the experimental results show that 
ψ4 ≈ ψ1 i.e. the algorithm scales well.   
 
6. Conclusion and future work 
 
 We have presented an adaptive synchronization 
algorithm that addresses the impact of network latency on 
shared scenes in distributed mixed and virtual reality 
applications. The fundamental property of our design is 
that the algorithm takes into account the network latency. 
Moreover, by taking into account the measurement 
history of the end-to-end network delays between the 
nodes and the server, the network jitter is taken into 
consideration. The decentralized computation approach 
for the drift values, carried out independently at each 
node, improves the system’s scalability and its real-time 
behavior.  
 The proposed algorithm works under the assumption 
that the system is driven by events generated by a human 
actor or a sensor with low update frequency. As the 
widespread use of high speed optical networks and optical 
routing becomes increasingly common, the approach 
presented will be widely applicable. Future work will 
involve testing the current algorithm when high frequency 
update sensors are connected to the system (e.g. tracking 
systems and haptic devices). 
 If the network latency is high, disconcerting jumps in 
the object position and orientation will occur at some 
nodes. We are investigating the possibility of eliminating 
these jumps using interpolation.  
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